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Abstract- Liquid bridges play a significant role in maintaining capillary continuity across porous blocks in fractured 

rocks. Capillary continuity created by liquid bridges is important in various fields such as oil recovery from naturally 

fractured oil reservoirs, water resources and environmental applications. In this paper, static liquid bridges are 

mathematically studied. A new dimensionless analysis of the Young-Laplace equation is developed, where the shape 

of the liquid bridge surface is characterized with two dimensionless parameters. Through this dimensionless scaling, 

under the absence of gravity, an integral describing the gas-liquid interface variation of a liquid bridge is obtained 

and evaluated numerically. The findings of this work improve our understanding of fluid flow in fractured porous 

media. 
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1. Introduction 
A good understanding of transport phenomena in unsaturated fractured porous media is the key to the 

successful description of a number of industrial processes such as oil recovery from petroleum reservoirs 

(Dejam and Hassanzadeh, 2011; Dejam et al., 2011), water resources and waste disposal management 

(Aspenes et al., 2007; Ghezzehei and Or, 2005; Or and Ghezzehei, 2007). For instance, Ghezzehei and Or 

(2005) developed a theoretical model for liquid fragmentation along inclined fractures and then Or and 

Ghezzehei (2007) applied this model to study the potential for more rapid arrival times of pollutants 

carried with discrete liquid elements along the inclined fractures compared to continuum liquid film flow 

on both fracture walls. Also, Dejam and Hassanzadeh (2011) modeled capillary continuity between porous 

matrix blocks through formation of liquid bridges. Capillary continuity created by the liquid bridges can 

improve oil recovery from naturally fractured reservoirs substantially. Fracture capillary pressure and a 

block-to-block interaction between matrix blocks can significantly affect the transport of material from 

rock matrix blocks. The effect of these two important phenomena has been a source of uncertainty in 

predictions of oil recovery (Saidi, 1987; Horie et al., 1990) and contaminant migration in subsurface 

formations (Ghezzehei and Or, 2005; Or and Ghezzehei, 2007) and requires further investigation. The 

block-to-block interaction between matrix blocks can be explained by the combination of two different 

phenomena: capillary continuity between blocks and reinfiltration of the drained liquid from upper to 

lower blocks. These processes cause drastic changes in the fluid transport between the rock matrix blocks. 

The capillary continuity phenomenon is an important contributor to oil drainage in fractured reservoirs 

and contaminant migration in fractured aquifers. Capillary continuity provides a strong communication 

between partially or completely isolated rock matrix blocks, thus creating an enhanced transport of liquids 

by gravity drainage (Firoozabadi and Markeset, 1995). The gravitational drainage efficiency of liquids 

from a column of stacked rock blocks is dictated by the continuous height of the liquid column (Horie et 

al., 1990). In other words, capillary continuity increases the height of the continuous liquid column in a 

vertical column of fractured rock and thereby increases the recovery of oil. 

Capillary continuity in vertically stacked matrix blocks has been studied extensively (Horie et al., 

1990; Labastie, 1990; Stones et al., 1992). They investigated the properties of materials present in 

fractures and the effects of the overburden pressure as well as the relative permeability on the capillary 

continuity. Firoozabadi and Markeset (1994) reported a series of experimental results in which they varied 
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the fracture aperture and degree of contact between blocks. They observed that the formation and 

breakdown of liquid droplets across open fractures was one of the mechanisms of desaturation (i.e., a 

decrease of liquid saturation in the upper matrix block). Saidi (1987) attempted to specify the conditions 

for having stable liquid bridges across fractures. He concluded that if the fracture aperture is about 50 μm 

or more, capillary continuity along a stack of matrix blocks cannot be realized. An important aspect is the 

critical fracture aperture, which is defined as the aperture below which liquid drops may form stable liquid 

bridges across the fractures. A formula for the critical aperture was suggested by Sajjadian et al. (1998). 

Aspenes et al. (2007) experimentally showed that wetting phase bridges stabilize capillary continuity 

across open fractures and increase oil recovery. They discussed that the size of the bridges seems 

controlled by the wettability of the rock and not by the differential pressure applied across the open 

fractures. Dejam et al. (2009) studied the impact of fracture angle and aperture variations on a re-

infiltration process through discrete traveling liquid elements and continuum film flow along inclined 

fractures between upper and lower porous matrix blocks. Recently, Dejam and Hassanzadeh (2011) 

studied the formation of liquid bridges between porous matrix blocks. They coupled a liquid element 

elongation model with various fracture capillary pressure models to study the liquid bridge formation 

phenomenon. They concluded that a threshold Bond number plays a significant role in the formation of 

liquid bridges between matrix blocks. Furthermore, Mashayekhizadeh et al. (2011) observed the free 

gravity drainage mechanism of oil at pore level using glass micromodels. They investigated the role of a 

fracture aperture and tilt angle on the stability of liquid bridges and the shape of a front during free gravity 

drainage process. In addition, Mashayekhizadeh et al. (2012) considered the stability of liquid bridges in 

fractured porous media at the pore scale using a glass micromodel representing a stack of two blocks at 

different tilt angles to monitor the frequency and stability of liquid bridges formed during free-fall gravity 

drainage as a function of the tilt angle. They observed that by increasing the tilt angle, the liquid bridge 

frequency decreased but its stability increased and this resulted in higher ultimate recovery. 

A number of theoretical studies have investigated static liquid bridges (Fisher, 1926; Batchelor, 1967; 

Erle et al., 1971; Fortes, 1982; Firoozabadi and Hauge, 1990; Langbein, 1992; Lian et al., 1993; Simons 

and Seville, 1994; Willett et al., 2000; Kralchevsky and Nagayama, 2001; Rynhart et al., 2002). The 

related studies in the literature are not limited to static liquid bridges. In the past decades, the dynamic 

evolution of the gas-liquid interface and the rupture of a liquid bridge have been the subject of numerous 

publications (Zhang et al., 1996; Mikami et al., 1998; Shi and McCarthy, 2008; Darabi et al., 2010; Qian 

and Breuer, 2011). This article is focused on the shape of liquid bridges between rock matrix blocks and 

addresses the liquid bridges formed between two parallel plates. In the following section, an analysis of 

the Young-Laplace equation is presented. With the aid of this analysis, the shape of a liquid bridge can be 

expressed in terms of two dimensionless parameters. 

This paper is structured as follows. First, a new dimensionless model is developed for the shape 

variations of the liquid bridges between porous matrix blocks. Then the results and discussions are 

presented, followed by the summary and conclusions. 

 

2. Mathematical Modeling 
Fig. 1 shows a liquid bridge in a horizontal fracture (with aperture b). As mentioned earlier, it is 

assumed that the lower face of the upper block and the upper face of the lower block are assumed to be 

flat and smooth; therefore, the liquid bridge is assumed to be between two parallel plates. Furthermore, it 

is assumed that the liquid bridge is at static conditions and the shape of the liquid bridge does not vary 

with possible longitudinal flow from the upper to lower blocks. In Fig. 1, z and r demonstrate polar 

coordinates where z is measured along the symmetry axis and r is the distance perpendicular to this axis. 

Moreover, it is assumed that the interface has axial symmetry in the absence of gravity; therefore, its 

shape can be defined by r(z).The Young-Laplace equation can be written in order to describe the capillary 

pressure in the absence of gravity inside the fracture as follows (Adamson, 1982): 
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where pcf is the fracture capillary pressure (or pressure difference across the gas-liquid interface), σ is the 

gas-liquid surface tension, and R1 and R2 are the radii of curvature of the curved bridge surface at any 

point and can be expressed as below (Adamson, 1982): 
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Fig. 1. A liquid bridge formed inside a horizontal fracture. The parameters used in this figure are defined in the text. 

 

For our case, the Young-Laplace equation relates the curvature of the gas-liquid interface to the 

fracture aperture size, the gas-liquid surface tension, and the fracture capillary pressure caused by the 

pressure difference between liquid and gas in the fracture. In the absence of gravitational field, the mean 

curvature of the bridge surface [(1/R1) + (1/R2)] will be the same at any point of the interface (Fortes, 

1982; Firoozabadi and Hauge, 1990). 

Eq. (1) along with Eq. (2) leads to a nonlinear 2
nd

-order ODE. The boundary conditions are 

established from the contact angles between the gas-liquid and the faces of the upper and the lower matrix 

blocks. Schubert (1982) detailed the solution of combined Eqs. (1) and (2) by transformation into either a 

1
st
-order ODE or an integral equation. He also reviewed other efforts to solve Eq. (1) subject to Eq. (2). 

Schubert (1982) provided graphical solutions to relate the capillary force, the contact angle and the 

volume of the liquid bridges for various configurations of grains. Firoozabadi and Hauge (1990) used 

Schubert’s graphical solutions to find the capillary pressure as a function of saturation for fractures and 

spheres surrounded by flat plates. Hernández-Baltazar and Gracia-Fadrique (2005) showed that the 

Young–Laplace equation of differential form can be solved under an elliptic representation for a fluid-

fluid interface in the coordinate range of 0 to 90°. They found a simple analytical relation between the 

curvature radius and the elliptic parameters, which is applicable for drops and bubbles with elliptical and 

spherical shapes, while in this work an analysis of the Young-Laplace equation in terms of two 

dimensionless parameters is presented to investigate the shape of the liquid bridge in a horizontal fracture 

between two matrix blocks. 

Since the fracture capillary pressure gives the pressure difference between liquid and gas in the 

fracture, it is possible to write it as: 

 

(3) 
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Let rc be the radius of the line of contact of the liquid bridge interface with the faces of the blocks and 

r0 the radius at z = 0. Using two dimensionless variables, 
cD rrr /  and )2//(bzzD  , Eq. (2) can be re-

written in the following form: 
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where   is a dimensionless term, defined by rb 2/ . After substituting Eq. (4) into Eq. (1) and 

performing some manipulations, the following equation can be derived: 
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where   is a dimensionless term, defined by brp ccf  /2 . Integrating both sides of Eq. (5), one can 

write: 
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in which C is the constant of integration. In order to determine the constant of integration, C, the following 

boundary conditions at zD = 0 can be used: 
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Using the above boundary conditions, the integration constant, C, can be found: 
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Substituting the value of the integration constant, provided in Eq. (8), into Eq. (6), the following 

expression is obtained: 
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After some simplifications, Eq. (9) can be reduced to: 
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where g(rD) expresses a function of rD as follows: 
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Eq. (10) can be integrated as follows: 
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The integral limits for the left-hand side vary from 0 to zD, while the integral limits of the right-hand 

side change from rD0 to rD. The ranges of variation of rD0 and rD are 10 0  Dr  and 10  DD rr , respectively. 

For simplicity, the integrand of the above integral, Eq. (12), is substituted by f(rD): 
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Using Eq. (13), Eq. (12) can be written as: 
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Using Eq. (14), the profile of zD versus rD for a fixed value of rD0 can be obtained. The maximum 

values which rD and zD can have are denoted by rDc=1 and zDc=1. Integral (14) cannot be integrated 

analytically; therefore, it is integrated numerically using Simpson’s 1/3 rule (Gerald and Wheatley, 1999). 

 

3. Results and Discussion 
The representative values for parameters for the developed model are presented in Table 1. Using the 

values in Table 1 and assuming α = 1, the dimensionless parameter, β, is calculated using brp ccf  /2  

and will be equal to 0.1. Fig. 2 demonstrates the variations of zD with respect to rD for different values of 

rD0. In other words, Fig. 2 demonstrates the shape variation of liquid bridges between two porous matrix 

blocks. As it is clear from Fig. 2, when the shape of the liquid bridge begins to vary, its central radius (the 

radius at z = 0, r0) reduces while the contact radius of the liquid bridge interface with the faces of the 

blocks remains fixed. The coordinate which represents the situation of the liquid bridge interface with the 

top plate in the first quadrant is rDc = 1, zDc = 1. Fig. 2 shows that the gas-oil interface of liquid bridges is 

symmetric because gravity was not considered. For application of interest, the stability of liquid bridges 

between porous matrix blocks can play a significant role in oil recovery from naturally fractured 

reservoirs. Some factors such as axial flow from an upper matrix block, discharging through a lower 

matrix block and fracture roughness affect the stability of liquid bridges and make it complex to study and 

analyze. 

 
Table 1. Data used in determination of the shape variation of the liquid bridge  

(Firoozabadi et al., 1988; Horie et al., 1990; Firoozabadi and Markeset, 1994). 

 

Parameter Representative value 

Oil-gas surface tension, σ (N/m) 0.01 

Fracture aperture, b (μm) 40 

Fracture capillary pressure, pcf (Pa) 100 
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Fig. 2. zD versus rD for different values of rD0 in rD-zD coordinate when the effect of gravity is ignored. The 

dimensionless parameters are α = 1 and β = 0.1. 

 

4. Summary and Conclusions 
Formation of liquid bridges can cause capillary continuity between porous matrix blocks, improve oil 

drainage from naturally fractured reservoirs and affect contaminant migration in fractured rocks. This 

paper presented a theoretical study of the static shape of liquid bridges. Here, a new dimensionless 

analysis of the Young-Laplace equation is developed, in which the shape of the liquid bridge surface can 

be written in terms of α and β as defined dimensionless parameters. For a limiting case with zero gravity 

an integral describing the gas-liquid interface variation of a liquid bridge is obtained which has been 

solved numerically. The analysis presented may be useful for a stability analysis of perturbed liquid 

bridges subject to axial flow from an upper matrix block and discharging through a lower matrix block in 

fractured porous media. 
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