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Abstract- The electrophoretic motion of a charged spherical particle located at an arbitrary position within a 

charged spherical cavity along the line connecting their centers is studied theoretically for the case of thin electric 

double layers.  To solve the electrostatic and hydrodynamic governing equations, the general solutions are 

constructed using the two spherical coordinate systems based on the particle and cavity, and the boundary conditions 

are satisfied by a collocation technique.  Numerical results for the electrophoretic velocity of the particle are 

presented for various values of the zeta potential ratio, radius ratio, and relative center-to-center distance between 

the particle and cavity.  In the particular case of a concentric cavity, these results agree excellently with the available 

exact solution.  The contributions from the electroosmotic flow occurring along the cavity wall and from the wall-

corrected electrophoretic driving force to the particle velocity are equivalently important and can be superimposed 

due to the linearity of the problem.  The normalized migration velocity of the particle decreases with increases in the 

particle-to-cavity radius ratio and its relative distance from the cavity center and increases with an increase in the 

cavity-to-particle zeta potential ratio.  The boundary effects on the electrokinetic migration of the particle are 

significant and interesting. 
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1. Introduction 
A charged solid surface in contact with an electrolyte solution is surrounded by a diffuse cloud of 

ions carrying a total charge equal and opposite in sign to that of the solid surface.  This distribution of 

fixed charge and adjacent diffuse ions is known as an electric double layer.  When a charged colloidal 

particle is subjected to an external electric field, a force is exerted on both parts of the double layer.  The 

suspended particle is attracted toward the electrode of its opposite sign, while the ions in the diffuse layer 

migrate in the other direction.  This particle motion is termed electrophoresis and has long been applied to 

the particle analysis and separation in a variety of physicochemical and biomedical systems (Masliyah 

and Brattacharjee 2006).  

The electrophoretic velocity 0U  of a dielectric particle of arbitrary shape and thin double layer 

(relative to the local radii of curvature of the particle) in an unbounded ionic solution is related to the 

uniformly imposed electric field E  by the well-known Smoluchowski equation (Anderson 1989),  

 

 EU


 p

0  (1) 

  

where   and   are the viscosity and permittivity, respectively, of the fluid, and p  is the zeta potential 

associated with the particle surface.  Since the thickness of the double layer usually ranges from several to 

tens of nanometers, which is much smaller than the typical particle size, Eq. 1 has been used widely in 

practice.  

On the other hand, the interaction between the ions in the mobile portion of the double layer 

adjoining a charged solid surface with the zeta potential w  and an external electric field generates a 
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tangential velocity for the fluid within the diffuse layer.  This electroosmotic velocity at each point on the 

outer edge of the thin diffuse layer, which appears as a slip velocity relative to the frame of the solid 

surface, is given by the classic Helmholtz equation,  

 

s
w

s Ev



  (2) 

 

where sE  is the component of the local electric field tangential to the dielectric solid surface.  

In real situations of electrophoresis in microfluidic and other practical applications, colloidal 

particles are not isolated and will move near solid boundaries (Smith et al. 2000; Kang and Li 2009). The 

purpose of this article is to obtain a semi-analytical solution for the axisymmetric electrophoresis of a 

dielectric sphere in a nonconcentric spherical cavity with thin double layers.  The electrostatic and 

hydrodynamic equations governing the system are solved by using the boundary collocation method, and 

the wall-corrected electrophoretic mobility of the particle is obtained with good convergence for various 

cases.  Some interesting features of the boundary effect on the electrokinetic migration of the particle are 

revealed from the results.  

 

2. Analysis  
We consider the axisymmetric electrophoretic motion of a dielectric spherical particle of radius a  

and zeta potential p  in an electrolyte solution within a spherical cavity (pore) of radius b  and zeta 

potential w , as shown in Fig. 1, at the quasi-steady state.  Here, ),,( z  and ),,( 22 r  represent the 

circular cylindrical and spherical coordinate systems, respectively, with the origin at the center of the 

cavity.  The center of the particle is located on the z  axis away from the cavity center at a distance d .  A 

uniform electric field zE e  is imposed to the fluid, where ze  is the unit vector in the z  direction.  The 

thickness of the electric double layers adjoining the particle and cavity surfaces is assumed to be much 

smaller than the particle radius and the spacing between the solid surfaces.  Our objective is to obtain the 

correction to Eq. 1 for the particle velocity due to the presence of the cavity wall.  
 

 
Fig. 1 Geometrical sketch for the axisymmetric electrokinetic migration of a spherical particle in aspherical cavity. 
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 The fluid outside the thin double layers is of uniform composition, electric neutrality, and constant 

conductivity; hence, the electric potential distribution ),(  r  is governed by the Laplace equation from 

charge conservation,  

.   

02    (3) 

 

Since the particle is non-conducting, the boundary condition for   at its surface (or more precisely, 

the outer edge of the double layer) is  
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where ),,( 11 r  are the spherical coordinates based on the center of the particle.  
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in the Dirichlet approach (Keh and Hsieh 2007). 

The general solution of the electric potential distribution can be expressed as 
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where mP  is the Legendre polynomial of order m, and the unknown constants mS1  and mS2  need to be 

determined using the boundary conditions at the particle surface and cavity wall.   

With knowledge of the solution for the electric potential field, we can now proceed to find the fluid 

velocity distribution.  Owing to the low Reynolds number, the fluid motion outside the thin double layers 

is governed by the Stokes equations,  

 

0v  p2 ,  

0 v ,  

 
where v  is the fluid velocity field and p  is the dynamic pressure distribution.  

The boundary conditions for the fluid velocity require that  
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 Here, U  is the migration velocity of the particle to be determined, 1e  and 2e  are the unit vectors 

along the 1  and 2  coordinates, respectively, and the expression for   has already been given by Eq. 6.  

There is no rotation of the particle due to the axial symmetry of the system.  

Since the particle is freely suspended in the surrounding fluid, the net force on the particle must 

vanish.  
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0π4 2  DF   (10) 

 

Obtaining the general solution of Eq. 7 (Keh and Lee 2010) and the electric potential distribution  , 

we can use the boundary collocation method to determine the electrokinetic migration velocity U  of the 

confined particle.  

 

3. Results and Discussion  
The numerical solutions for the electrokinetic migration of a spherical particle within a spherical 

cavity caused by an imposed electric field along the line through the particle and cavity centers can be 

obtained by using the boundary collocation method.  The details of the collocation scheme used for this 

work were given by Keh and Lee (2010), in which very good accuracy and convergence behavior have 

been achieved.  

The results for the electrokinetic migration velocity of a charged spherical particle in a charged 

spherical cavity normalized by its electrophoretic velocity in an unbounded fluid, 0/UU , versus the 

radius ratio ba /  for various values of the zeta potential ratio pw /  and normalized center-to-center 

distance )/( abd   are presented in Fig. 2.  For constant values of ba /  and )/( abd  , as expected, the 

value of 0/UU  increases monotonically with an increase in pw / .  When the value of pw /  is 

positive, the presence of the cavity can greatly enhance the electrophoretic migration of the particle, and 

this great enhancement is attributed to the electroosmotic flow recirculation arising from the interaction 

between the applied electric field and the charged cavity wall.  As long as the value of pw /  is greater 

than 1 , the value of 0/UU  is positive.  When the value of pw /  is smaller than about 1 , however, 

the value of 0/UU  may become negative, meaning that the velocity of the particle reverses its direction 

due to the relatively strong effect of the cavity-induced electroosmotic flow in the opposite direction.  For 

a specified value of pw / , the magnitude of 0/UU  in general decreases with an increase in ba /  or 

)/( abd  . 

 
Fig.2 Plots of the normalized electrokinetic migrationvelocity 0/UU  of a charged sphere in a chargedspherical 

cavity versus the radius ratio ba /  with the zeta potential ratio pw /  as a parameter. The solid and dashed curves 

denote the case of 0)/(  abd  and 5.0)/( abd , respectively. 
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4. Conclusions  
A semi-analytical investigation of the electrophoretic motion of a charged spherical particle 

arbitrarily positioned within a charged spherical cavity along the line of their centers using a boundary 

collocation method is presented in the limit of thin electric double layers.  The Laplace and Stokes 

equations are solved for the electric potential and velocity fields, respectively, in the fluid phase, and 

numerical results for the electrokinetic migration velocity of the particle are obtained for various values of 

the relative particle radius, distance between the particle and cavity centers, and zeta potential of the 

cavity wall. The electroosmotic flow induced by the interaction between the applied electric field and the 

thin double layer adjoining the cavity wall can lead to a significant enhancement/reduction of the 

electrophoretic migration of the particle if the ratio of their zeta potentials is positive/negative.  When the 

particle is situated closer to the cavity wall or becomes larger, the wall effect of hydrodynamic retardation 

increases and the electrophoresis of the particle slows down.  The boundary effects on the electrophoresis 

can be significant in appropriate situations. 
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