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Abstract- A well-balanced unstructured central-upwind scheme is proposed for the Saint-Venant System with 

topography. We prove that the designed scheme resolves the steady state solution (lake at rest). We illustrate the 

performance of the designed scheme using numerical tests. The obtained numerical results clearly demonstrate the 

well-balanced of the new scheme, its robustness and high resolution for shallow water equations with variable 

topography using the unstructured grids. 
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1. Introduction 
The central schemes are widely used after the pioneer work of Nessyahu and Tadmor (1990), where a 

second order finite volume central method on a staggered grid in space-time was proposed. This scheme 

offers higher resolution with simplicity of the Riemann-solver free approach. Following Kurganov and 

Tadmor (1999), this scheme suffers from excessive numerical viscosity when a small time step is 

considered. Kurganov et al. (2001) proposed the central-upwind schemes which use information about the 

propagation of the waves. Kurganov and Petrova (2005) extended the central-upwind scheme to triangular 

grids for solving two-dimensional systems of conservation laws. Bryson et al. (2011) proposed a central-

upwind scheme for the Saint-Venant system on triangular grids with discontinuous bottom topography. In 

this paper we proposed a central-upwind scheme for the Saint-Venant System with discontinuous bottom 

topography on cell-vertex grids. The computational cells used in our method are the dual of the primary 

triangular mesh. We propose a well-balanced discretization of the source term due to the variable 

topography. The numerical examples demonstrate the ability of the proposed method to accurately resolve 

the small perturbations of the steady state solution. 

The outline of the paper is as follows. In Section 2, we present the shallow water equations. In 

Section 3, we present the semi-discrete form of the proposed unstructured central-upwind scheme. The 

well-balanced discretization of the source term due to the variable topography is proposed in Section 4. 

Section 5 presents some numerical tests for our method. Some concluding remarks complete the study. 

 

2. Shallow Water Equations 
In this paper, we focus on the source term due to bottom topography in the following shallow water 

model: 
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where ( , )B x y  is the topography, ( , , )h x y t  is the water depth, ( , , )u x y t  and ( , , )v x y t  are the x - and 

y -components of the average velocity, and g  is the gravity acceleration. The new vector of primitive 

variables U := ( , , )Tw p q  is used to rewrite the system (1)  as follows:  
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(3) 

 

 

 where :=w h B  is the water surface elevation and :=p hu  and :=q hv  are the flow rates in x  and 

y directions. 

 

3. The Unstructured Central-upwind Scheme 
3.1. Unstructured Grid 

First we consider an initial triangular discretization of the global domain  to obtain the 

computational cells denoted by jM  which are centered around the vertex as shown in Figure 1. We use 

the computational discretization 
=1

=
N

jj
M , where N  is the number of cells which also represents the 

number of nodes of the initial triangular gird. To define the dual grid for each computational cell 
jM  

around the node jP , the center of mass of the surrounding triangles having jP  as a common vertex are 

connected to obtain the boundary 
jM  of the computational cell 

jM . The primitive variables are located 

at the center of mass jG  of each cell jM  of area 
jM . The interfaces of this cell are denoted by 

1 2( ) , ( ) ,...( )j j j m
j

M M M    which are shared with the neighboring cells 1 2, ,...j j jm
j

M M M , 

respectively. The length of each cell-interface ( )j kM  is denoted by jkl  and its unit normal vector is 

denoted by := (cos ,sin )T

jk jk jkn   , where jk  is the angle of the unit normal vector jkn  with the x

axis. The coordinates of jG  are denoted by ( , )T

j jx y . The midpoint of the kth side of computational cell 
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jM  is denoted by 
jkP  and the two nodes of this side are denoted by jk

s
P , where =1,2s . The time step 

and the time at step n  are denoted by t  and :=nt n t , respectively. 

 
Fig.1. The unstructured grids used, solid lines are the initial grids and the dashed lines are the computational cells. 

 

3.2. The Semi-discrete Form of the Unstructured Central-Upwind Scheme  
The same method developed by Kurganov and Petrova (2005) for the central-upwind scheme on 

triangular grids can be used to obtain the following semi-discrete form of the central-upwind scheme on 

cell-vertex grids: 
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where U j  is the approximation of the cell averages of the solution. The quantity S j  is a discretization of 

the cell averages of the source term which will be discussed in Section 4. 

The semi-discrete form of the scheme (4)  uses the bottom elevation jkB  at the midpoint of the kth  

cell interface, and the values U ( )j jkP  and U ( )jk jkP  at time t  on the two sides of this interface are 

determined by using the reconstruction as explained in the next section. 

The extreme values of the right- and left-sided local speeds at the kth interface of the computational 

cell jM  can be approximated as: 
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where 1  and 3  are respectively the smallest and largest eigenvalues of the jacobian matrix 
jkV of 

system (1). 

 
3.3. Calculation of the Gradient 

We use the Green-Gauss theorem to compute the gradient of the ith component of U j
, denoted by 

( )U i

j , =1i , 2 , 3 :  

 

( ) ( ) ( )

( )
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1 1
U = U ( , ) = U ,

m
j

i i i

j j jk jk
M M

j j kkj j

x y dxdy n ds
M M 

     (6) 

 

where 
( )U i

jk  is the estimated value of 
( )U i

j  on the cell interface ( )j kM . In the proposed method we use 

the average values of the computational cell 
jM  and its neighbor 

jkM . A modified minmod-type 

reconstruction is proposed. We compute 
jm  gradients and we select the one that has the smallest 

magnitude. This method is sufficient to avoid the numerical oscillations. For each [1, ]jk m , the 

gradient is calculated using equation (6)  where the average values on each cell interface s  are estimated 

by 
( ) ( ) ( )U = (U U ) / 2i i i

js j js , except for =s k  where we use an average of the values obtained for the 

interfaces attached to the interface k . 

For each variable w , p  and q , the above procedure leads to 
jm  gradient values and the one with 

smallest magnitude will be considered as the gradient of that variable in the cell. The values U ( )j jkP  and 

U ( )jk jkP  on the two sides of interfaces are obtained using the following linear reconstruction  

   

U ( , ) := U U ( ) U ( ).j j jx j jy jx y x x y y     (7) 

 

The topography at the vertices are used to construct the function ( , )B x y . The elevation at the 

midpoint of the interface is defined as 
1 2

= ( ) / 2jk jk jkB B B . We consider the following reconstructed 

value of the bottom elevation at the center of the mass jG :  

   

=1

1
= ( , ) = ,

m
j

j k jk
M

j kj

B B x y dxdy B
M
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where = /k jk jM  and jk  is the area of the triangle 
1 2

j jk jkG P P  (see Figure 1). 

The function ( , )B x y  is defined as the union of jm  planes for each cell jM . The kth plane passes 

through the bottom elevation jB  of jG  and the bottom elevations 
1

jkB  and 
2

jkB  at the two ends of the 

kth  interface of jM . 
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4.  Well-balanced Discretization of the Source Term 
The requirement for a well-balanced scheme is the preservation of the solution represented by 

0u  , 0v   and =w C , where C  is a constant. For this type of solution, 

U ( ) = U ( ) = ( ,0,0)T

j jk jk jkP P C . This condition is sufficient to simplify the second and third equations 

of the semi-discrete form of the scheme (4)  as follows:  
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The source term 
(2)S j  given by:  
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g
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The following results are obtained by using the divergence theorem:  
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Therefore 
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For the source term 
(3)S j  we obtain the following result:  
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The discretization of the source term is well-balanced if the right-hand side terms of equations (11)  

and (12)  are zero for U = ( ,0,0)TC . In the proposed method we use the following discretization of the 

source term  
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5. Numerical Tests 
The proposed central-upwind scheme is employed to compute small perturbations of the “lake at 

rest" steady states with variable topography. The tests have been performed using =1g . The third order 

total variation diminishing (TVD) Runge Kutta method (Shu and Osher, 1988) is used as temporal 

scheme. In this test, we evaluate the ability of the proposed scheme to simulate small perturbations of a 

stationary-state solution and we examine the well-balanced property of the scheme. The performance of 

the scheme is examined using a modified version of the test introduced by Le Veque (1998) using very 

small perturbations. We consider a rectangular computational domain [0,2] [ 0.5,0.5]   and a variable 

topography defined as:  

  
2 2( , ) = 0.8exp( 5( 0.9) 50 ).B x y x y    (14) 

 

Initially, the water surface is flat ( , ) =1w x y  everywhere except in the rectangle domain defined by 

0.05 < < 0.15x   

   

1 , 0.05 < < 0.15,
( , ) = .

1. otherwise.

x
w x y





 (15) 

 

 Figure 2  shows the solution for the case 
4=10 

 computed using an average cell area 
6= 7.78 10jM   at times = 0.6t  and =1.8t . We do not observe any numerical oscillations and the 

proposed method presents a high resolution of small perturbations of the “lake at rest" steady states with 

variable topography. In order to show the importance of the proposed well-balanced discretization of the 

source term, we will use another approximation for this term by using the midpoint rule  
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where ( )x jB  and ( )y jB  are computed using the divergence theorem  

 

=1

=1

1
( ) = cos( ),

1
( ) = sin( ).

m
j

x j jk jk jk

kj

m
j

y j jk jk jk

kj

B l B
M

B l B
M









 (17) 

 



 

53-7 

 Figure 3  (left) shows the 3D view of the solution at time = 0.6t  with 
4=10 

 using the same 

mesh used for the proposed scheme. The non-well balanced scheme leads to spurious modes which 

influence the solution. Figure 3  (right) shows the solution, using the coarser mesh with average cell area 
5= 2.24 10jM  , which is largely deformed. 

 

 

Fig. 2.  Small perturbation computed by the well-balanced central-upwind scheme 
4=10 . 

 

 

 

Fig. 3. Small perturbation 
4=10 

: Left: non-well-balance using finer grid. Right: non-well-balance using coarse 

grid. 

 

6. Conclusions 
In this paper, we introduced a new well-balanced unstructured central-upwind scheme to 

approximate the solution of shallow water equations with variable bottom topography. The performance 
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of the proposed method was tested using the small perturbations of the steady state solutions over variable 

topography. The numerical tests illustrate the ability of the proposed method to resolve the solution of the 

shallow water equations over variable topography. Currently we are working on the positivity of the 

scheme in order to develop a well-balanced positivity preserving unstructured central-upwind scheme for 

shallow water flows over variable topography. 
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