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Abstract- A family of classical Boussinesq system of nonlinear wave theory is presented in a form of conservative 

equations supplemented by Riemann solver, which is a fundamental block in the Godunov frame formulation of 

flow problems. The governing system simulates different physical phenomena, such as propagation of a small 

amplitude waves on a surface of water, or pulse wave propagation in compliant thin walled arterial systems. While 

the first model is for verification purpose only, pulse wave propagation through the junction of thin walled elastic 

branches is of primary interest. The inertial effects associated with transversal motion of the wall are introduced, 

affirming the dispersive nature of pulsating waves. The problem of accounting for branching and possible 

discontinuity of wall properties is addressed. Preliminary analysis is presented which leads to the correct jump 

conditions across bifurcated area. As a result, the model accurately describes the formation of transmission and 

reflection waves at bifurcation, including effects of discontinuities.  The Riemann solver supplies the inter cell flux 

and junction fluxes, based on conservation of volume, momentum and energy, with account of losses associated 

with the flow turn angle at bifurcation. An implicit monotonic total variation diminishing (TVD) scheme second 

order accurate in time and space has been applied for the analysis of solitary wave solution in bifurcated arteries. 

Numerical results are in a good agreement with the known analytical and numerical solutions reported elsewhere. 

Based on direct computational analysis the inverse solution was obtained, calculating the local elastic properties of 

the arterial wall, using typical diagnostic measurements.  Mathematical modeling presented in this work leads to a 

physiological understanding and interpretation of diagnostic measurements of the wave forms of a blood pressure, 

flow rate and an artery wall deflection. 
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1. Introduction 
Consider a broad family of Boussinesq type dispersive wave models (Bona et al., 2002) presented in 

a conservative form  
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where dot above variable means time derivative, subscripts are partial derivative by the axial coordinate. 

The equations Error! Reference source not found.,2) describe a diverse range of physical phenomena, 

for example acoustics models (Whitham, 1999), nonlinear Korteweg de Vries or Benjamin-Bona-Mahony 

dispersive waves models (Whitham, 1999; Karpman, 1974), propagation of small amplitude waves on the 

surface of incompressible flow in the passage of the finite depth (Whitham, 1999), pulse propagating 

incompressible flow in elastic or viscoelastic  segments (Sherwin et al., 2003; Formaggia et al., 2003), 

and others (Whitham, 1999; Karpman, 1974). 

 A well-developed high resolution CFD technique, capturing the physics of a wave structure by 

applying the relating Riemann solver, is presented. Convective terms have been discretized by the third 

order implicit finite volume approximation, whereas diffusive and dispersive terms have been 
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approximated based on second order finite difference implicit scheme. To avoid numerical oscillations 

across discontinuities of solution, a TVD (Total variation diminishing) scheme was applied 

(Chakravarthy, 1986). The proposed employment of implicit solver is justified by significant restriction 

imposed on a time step by alternative explicit scheme in case of stiff boundary value problems.  

The problem of accounting for topological bifurcation and possible discontinuity of wall properties is 

addressed. Preliminary analysis is presented which leads to the correct jump conditions across bifurcated 

area. The Riemann solver supplies the inter cell flux and junction fluxes, in case of bifurcation, upheld by 

conservation of volume, momentum and energy flow rates. Based on direct computational analysis the 

inverse solution was obtained, calculating the local elastic properties of the arterial wall using typical 

diagnostic measurements.   

 

2. Dynamics of Incompressible Flow in Elastic Vessel 
Conservation of mass and momentum results in the following system of 1D equations (A=A(x,t)-

cross sectional area of the vessel, u=u(x,t) – averaged flow velocity, p=p(x,t) – static pressure, f – the 

source friction term, ρ – density of incompressible fluid) (Sherwin et al., 2003). 
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For the thin walled elastic membrane vessel in a transversal motion the pressure – strain relationship is 

maintained by dynamic equilibrium condition (
w

 - density of the wall, )1/( 2 EE , where  E elastic 

modulus, ν-Poisson coefficient, η circumferential strain, h thickness of the vessel,  r0 radius of unstressed 

vessel) 
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Noting, that
22

0
)1(   rA , the total system of equations can be presented in the following non-

conservative form 
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2. 1. Solitary Waves Solution 

It is well known that Boussinesq equations possess solitary wave solution [1,2]. Substituting solution 

in a form of a traveling wave  (   )   ( )  (   )   ( )  (   )   ( ), where        , into 

(3),(4),(5), and integrate, one can obtain  ( )0(
0

 uu , where prime means derivative by X) 
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A non-linear momentum equation is obtained by multiplying equation (7) by d  and integration to yield 
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Setting Aη=maxX(η(X)),  AP=maxX(p(X)),  Au=maxX(u(X)), and using (6) to calculate integrals in 

equation (8), one can find speed of a wave propagation (pressure wave velocity - PWV )  in a form    
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presents the pulse wave velocity of the forward and backward solitary wave propagation. Based on 

asymptotic expansion )
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The increment 
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quantifies the correction to the classical Moens-Korteweg model, introduced by the present theory. While 

the linear model predicts all waves travel with the Moens-Korteweg speed (
MK

c ), accounting for 

nonlinearities predicts speed of propagation which exceeds 
MK

c  by 10–15 % within the physiological 

range of transmural pressure. 

The speed - amplitude relationship for the flow velocity
u

A , volume flow rate
Q

A , and pressure 
p

A  

are retrieved from equations (6), (7) for one way wave propagation 
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Fig. 1 shows dependence of wave velocity propagation on wall deflection and pressure amplitudes. All 



 

80-4 

quantities are presented in a non-dimensional form, being normalized to 
KM

c  for all velocities, to 
2

KM
c

for the pressure, to the radius r0 of the unstressed tube for the normal deflection. 

Results show that the speed of propagation strongly depends on the amplitudes of pressure waves. 

Not mentioning theoretical importance, equations (15–17) are useful for verifying numerical accuracy of 

CFD based simulation of solitary wave. 

 

 
Fig. 1.  The dependence of wave velocity propagation on displacement and flow velocity amplitudes. 

 

2. 2. Numerical Approach 
By inserting (2) into (1-4) we obtain the system written in the matrix conservation form 
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The unknown vector of primitive variables T
uq )( should satisfy partial differential equation (15) 

supplemented with relating initial and boundary conditions. To develop implicit procedure of integration 

with respect to time we invoke an asymptotic differential equation relating the unknown vector Q to its 

increment with respect to time Q  on different time layers. 
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Here, n is the time layer number,   is the time step,  -scheme parameter. Linearizing (15), we obtain 
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We substitute expressions for 


Q  and 


Q  given by (15), (16), (18), (19) respectively into (17) to 

obtain a differential equation for q , in which the coefficients and the right hand side are calculated in 

terms of variables on the preceding time layer. 
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To construct an implicit finite difference scheme, we express the flux Jacobian matrix as the 

difference between two nonnegative definite matrices defined as ;; RLHHHH   
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To approximate the differential equation in computational domain, we construct a uniform grid with 

a grid size h. Integer index corresponds to the cell center, fractional (half integer) to the cell face. Right 

and left finite difference operators are defined as follows: 
11

;
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equation (20) is replaced by the following finite difference counterpart 

 

  ii RHSqSHHM   )(  (21) 

 

The finite difference approximation of RHSi is defined as 
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where fluxes are evaluating according to TVD procedure using limited extrapolations of primitive 

variables described with details by Chakravarthy (1986), Liberson et al. (2000), Liberson et al. (1998), 

and Kosolapov et al. (1997) . 

The general Riemann problem for discontinuity breakdown is then utilized to evaluate the inviscid 

fluxes 
2/1i

F on the sides of each cell. The “viscous” fluxes are calculated using standard central 

differences (Liberson et al., 1999). The convective part of implicit operator is achieved by using the 

upstream differences with consideration of the sign of the characteristic speed (eigenvalues of the 

Jacobean matrix). Implicit boundary conditions for variations of variables are incorporated. The basic 

solver strategy employs a Gauss-Seidel relaxation procedure. In addition, Newton sub iterations are used 

to achieve convergence at each global time step reducing linearization errors. The procedure is of second 

order accurate in both space and time and provides stable convergence for time dependent hyperbolic 

equations without any artificial dissipation. Further details of numerical technique can be found in 

(Chakravarthy, 1986; Liberson et al., 1999; Liberson et al., 1998; Kosolapov and Liberson, 1997; Yee 

and Harten, 1987; Chakravarthy, 1984). 

 

3. Numerical Experiments 
3. 1. Scalar Nonlinear Waves 

Consider the one dimensional non-steady viscous Burgers’ equation 
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The Riemann problem with an initial discontinuity at x=0 can be expressed as a solution of the 

corresponding “inviscid” Burgers equation ( 0 ) with the initial state  

 










0,

0,
)0,(

x
R

u

x
L

u
xu  (27) 

 

where the subscripts L and R denote the left and right regions respectively. As it known the corresponding 

solution U consists of shock and rarefaction waves (Whitham, 1999), propagating from discontinuity 
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For the first example the Burgers’ equation was solved for a few viscosity coefficients ε=0.25, 0.1, 0.05, 

0.01, using 100 cells, with initial conditions 
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LR

uu .  In Fig. 2 results (diamonds) are compared with exact solution found in (Whitham, 

1999).  Courant number up to 30 does not practically affect an accuracy of results.  A snap shots of 

evolving sinusoidal profile is shown in Fig. 2, where viscosity coefficient is low, ε=0.003 (stiff problem). 

As expected no oscillations are observed using TVD formulations. 

 
Fig. 2. Numerical solution of Burgers equation. Comparison with an exact solution (left); Shock resolution (right). 

 

3. 2.  Flow in Elastic Arterial Segments 
Fig 3 shows dependence of a peak displacement amplitude on the flow velocity amplitudes based on 

the traveling wave model (15-17) and TVD approach. This solution serves as a test for the TVD model 

applied to the flow simulation inside elastic cylindrical cylinder. The downstream condition is specified 

as a non-reflected boundary condition, by setting to zero the backward moving Riemann invariant.  On a 

left boundary the sinusoidal profile for the velocity was specified. We used Courant number CFL= 2, 100 

cells along the tube, ϴ=0.5. 
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Fig. 3. Pressure magnitude vs. deflection magnitude. 

 

3. 3. Flow in Junction 
Consider junction element of bifurcation tree shown in Fig.4. We denote the parent branch by an 

index 1, and two daughter branches by the indices 1 and 2.  Variables related to the cell faces are noted by 

capital letters variables, the ones related to the cell interior – by low case letters. We have six unknown 

variables, pressure and velocity values associated with cell faces: 332211
,,,,, UPUPUP

. The cell faces 

deflections 321
,, NNN

are not independent, being derivatives of the corresponding pressure and velocities 

values. The low case letter variables are known at each step of iteration process. The total set of 6 

equations to calculate 6 unknowns comprises three conservation laws for the flow rate and momentum  (

L
h - losses associated with the area jump and a flow direction change inside a junction) 
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(30) 

 
and three equations describing the transfer of forward and backward propagating Riemann invariants 

(Sherwin et al., 2003) 
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Analytical solution can be obtained based on a linearized form of the governing system (30), (31), 

which was used in the present work to calculate fluxes. For general purpose the linearized solution could 

be used as an initial approach of solving (30), (31) by iterations. We consider fork type symmetric 

bifurcate as shown in Fig.4 where diameter of the parent branch is 2cm, whereas the peripheral branches 

are twice thinner. Elastic modulus is 1MPa, thickness 1.6mm. Boundary conditions have been specified 
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as a flow at the inlet section to the system, (proximal flow, Fig.5 ), and a pressure at each exit section, 

(distal pressure, Fig.5). Calculations used 100 cell, Courant number CFL=2; ϴ=0.5. Calculated proximal 

pressure and a distal flow rate presented in Fig.5, will be compared with in-vitro experimental testing 

data. 

 

 
Fig. 4. Pressure magnitude vs deflection magnitude. 

 

 

 
Fig. 5. Pressure and flow waveforms. 

 
3. 4. Inverse Problem of Hemodynamics 

The inverse problem of hemodynamic results in calculation of the local elastic modulus by non-

invasively measuring pressure wave velocity, peak pressure, normal deflection or ejection time and 

ejection volume. To determine elastic modulus we use its contour plot in terms of pressure wave velocity 

(PWV) and injection time built based on equations (12) or (13). For the specific values of an injection 

time and a peak pressure we simply identify elastic properties with the nearest contour line, as shown in 

Fig.6. All three combinations of PWV and ejection time result in the quantification of approximately the 

same elastic modulus of about 1.04MPa as it is shown in Fig 6.  
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Fig. 6. Elastic modulus calculation. 

 

4. Conclusion 
Analytical and numerical solutions are presented and verified for the one-dimensional direct and 

inverse problems of fluid dynamics in an elastic thin-walled tube. Based on direct computational analysis 

the inverse solution was obtained, calculating the local elastic properties of the arterial wall using typical 

diagnostic measurements.  
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