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Abstract - In this paper, the development of graphene oxide for environmental applications, following the approaches of different 

research groups were studied. The results were grouped per three main lines, depollution behaviour and characteristics, novel sensors 

and sensor materials and toxicity associated with the use of those materials. The main results were of the research has been 

emphasized, and some perspectives were highlighted for the future in the conclusions. Graphene oxide took a huge leap forward, but in 

order to gain more knowledge, a unified perspective is still required from all research groups, an unified perspective concerning 

methods for testing and critical parameters which should not be missed in any depollution study. Graphene oxide has the potential to 

become a highly produced material, due to the many advantages it brings, as long as it does not add its toxicity and as long as the 

danger it removes is lesser than the danger we face from using it.  
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1. Introduction 
In the last ten years carbon based materials have received careful attention due to the many advantages they poses, 

although not always easy to synthesize or industrialize, but with great adsorption behaviour, selectivity when needed 

through proper chemical or physical modification and biocompatibility in the case of drug delivery or medical implants. In 

the field of environmental depollution, carbon based materials, mainly graphene and graphene oxide materials, followed a 

few distinct routes of development, which can be categorized as follows: depollution of drinking and industrial water 

through adsorption [1-30] or photodegradation [31-36], the analysis of toxic substances in aqueous media through use of 

novel sensor materials [37-39], better methods for sample preparation involving the use of graphene oxide based materials 

[40-52] and last but not least the assessment of environmental fate and toxicity of these type of materials [53-60].  

Each type of environmental application is an important process, without the ability to successfully assess a potential 

threat it is virtually impossible to overcome it or even try to devise a long term plan to substantially diminish it. New 

methods for sample preparation are required, as analytical techniques constantly develop, those techniques are in the need 

of proper selectivity and sometimes targeted recovery of analytic compounds, targeting which can be compound specific 

[40-42] (a single compound or a few compounds with great toxicity are pursued) or class specific (the application targets a 

class of compounds, such as pesticides for example) [43-52].  Some analysis requires the development of better sensors, 

the proper determination of the concentration in situ being of outmost importance. In those cases, a proper selectivity is 

required in order to monitor and assess raises in concentration which may cause a need for a response, coupled with a short 

detection response time [37-39]. The depollution of waters using graphene oxide materials can be done using adsorption 

characteristics, which can be tuned to filter out a single compound selectively [1, 5, 9, 10, 12, 13, 21, 22, 24, 28, 61] or a 

range of compounds [2-4, 6-8, 15-18, 20, 23, 25, 27, 29] or photodegradation, in this case the graphenic material acting as 

a catalyst for the degradation reaction [31-36]. Of course, the fight for environmental depollution cannot be complete and 

is useless if in the struggle to remove a toxic component from the environment we add another one which has the potential 
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to be more toxic that the one we are aiming to remove. In this case, proper studies must be carried out to ensure, or at least 

assess the potential of new materials to cause an unwanted environmental impact [53-60]. 

In the present study, we aim to summarise the research made in the past few years (2013-2107) in the field of 

graphene oxide and its composites for environmental applications, each approach being illustrated though several articles 

which treat the subject. Three potential uses are highlighted, the use of the materials for sorption characteristics against 

priority pollutants, organic or inorganic, the use for sensors which can monitor and alert the raise in the pollutants 

concentration in a specific area and the use of graphene oxide materials as aids in analytical techniques that aim to monitor 

the concentration of environmental pollutants via methods developed in the lab. Another aspect which is treated in this 

study is the toxicity of those materials, based on the principle that to improve a technique, to remove pollutants from the 

environment, the material which does so must not be a pollutant in itself.  

 

2. Environmental depollution using graphene oxide materials 
  

2.1. Environmental depollution through adsorption 
In the last few years (2013-2016), a variety of materials have been developed that can potentially be used as sorbents 

for environmental pollutant species, be them organic or inorganic. The development of those type of materials can prove 

crucial for mankind, because despite the fact that our society has evolved considerably technologically, a large part of the 

population still lacks sources of potable water that is free of toxic contaminants. The development of new materials that 

can bring clean water to populations which are lacking must therefore be one of the main motors of the scientific 

community and an important milestone in scientific progress.  

One important fact about sorbent materials is that those materials must not be more toxic than the pollutants they want 

to remove, must have potential of reusability, good sorbent capacity and when possible must perform in a variety of 

working conditions, hence must possess certain versatility. Another important aspect is the production cost and the 

potential costs of regeneration of the sorbent, given the fact that countries which are in dire need of water sources are 

mainly poor countries or countries which lack the technological means to properly purify their waters.  

Graphenic materials, amongst which graphene oxide and materials based on graphene oxide, took a huge leap forward 

mainly due to the amount of funding received, from many funding agencies interested in developing new materials that 

would improve the technologies presently at our disposal. According to the review published by Gaurav Lalwani et al. [57] 

the European Union invested 1.3 billion dollars over 10 years in the graphene flagship project, Korea invested 44 million 

spend over 5 years on the same topic, United Kingdom invested 50 million pounds and Huawei Technologies, a Chinese 

company, invested 1 billion to improve graphemic technologies. Due to the high amount of funding, many different 

materials were developed, involving the use of graphene oxide, either in pristine state, or modified, physically or 

chemically, or through the formation of multi-material composites with new properties. The main properties targeted were 

electronic properties that would enable those materials to be implemented in new generations of electronic equipment, but 

in several situations, the materials obtained had other properties which made them more suitable for other applications, 

such as the case of sorbents for water purification.   

All the reported papers show good retention properties for pollutant species, using some quite ingenious pollutants that 

are chosen as model, both from the organic field and from the inorganic one. The inorganic range targeted by publishers 

covers heavy metals, chromium(VI) being the subject of several articles due to its increased toxicity. One other model used 

was uranium oxide, which was used to emphasize the sorbent behaviour towards radioactive nuclides, sorbent which could 

prove highly valuable in the case of nuclear accidents. Though highly improbable, due to modernisations operated in 

nuclear facilities worldwide, the risk involved and the cataclysmic proportions such an event might have completely 

justifies the development of sorbents which might purify the waters and help with the repopulation of an affected area.  

The studied papers emphasize greater sorption capacity for organic compounds reaching a very good sorbent 

behaviour in the case of methylene blue on a agar/ graphene oxide aerogel, results published by the group of L. Chen et al. 

[1]. The group of Vilela D. et al. [6] take the sorbent technology to another level making sorbents in the form of microbots 

which can capture lead by constantly moving through the contaminated solution. Their study reports greater sorption 

properties in dynamic conditions (through movement of the microbots) than in static conditions (when the microbots are 

staying motionless), which is to be expected given that most depolutions are done in dynamic mode, either through the use 

of columns, filters, or simple movement of the particles in the solution via magnetic stirring. The group lead by Harijan, 

D.K.L. [12, 13] reports two different sorbents based on graphene oxide/polyaniline, both used for the treatment of 
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hexavalent chromium ions, the difference being that one of the sorbents has magnetic particles grafted. The material 

grafted with magnetic particles shows a lesser adsorption capacity, but provides the final material with magnetic separation 

capabilities, which makes it easier for the material to be extracted from the solution once the sorption has reached its cycle 

via application of an external magnetic field.  

Removal of the sorbent of the material via external magnetic field seems to be a highly-sought characteristic in a 

material, and many groups [3, 5, 6, 8, 13-15, 21, 26, 30] decided to give their material this feature to simplify their 

approach towards a large scale industrial use application behaviour.  

  
Table 1: Main depollution characteristics. 

 

Material type Pollutant removed Adsorption 

capacity 

Number of 

cycles for 

reuse 

Reference 

3D agar/graphene oxide aerogel Methylene blue 578 mg/g 3 [1] 

Reduced graphene oxide supported ferrite hybrids Sulfonamides 1-200 ng/ml Not reported [3] 

Magnetic calcium silicate graphene oxide composite Acridine orange Not reported 3 [5] 

Graphene oxide based microbots Lead Not reported Not reported [6] 

double charged ionic liquid modified graphene oxide Lead, Cadmium, 

Nickel, Copper and 

Chromium 

Not reported Not reported [8] 

Silver-graphene oxide nanocomposite Eosin yellow Not reported Not reported [11] 

Graphene oxide sheets functionalized with polyaniline Chromium (VI) 192 mg/g Not reported [12] 

Fe3O4/graphene sheets/polyaniline Chromium (VI) 153.54 mg/g Not reported [13] 

Chitosan decorated with Fe3O4 nanoparticles crosslinked 

with graphene oxide 

Anionic and 

cationic dyes 

Not reported 4 [14] 

Ternary composite: halloysite nanotubes, Fe3O4 

nanoparticles and graphene oxide 

Rhodamine B and 

As(V) 

Not reported Not reported [15] 

Graphene oxide Levofloxacin and 

lead 

256.6 and 227.1 

mg/g 

Not reported [17] 

Graphene oxide Naphthalene, 1-

naphtol and 

cadmium 

145, 282 and 

35.7 mg/g 

Not reported [20] 

Magnetic β-cyclodextrin-graphene oxide nanocomposites Malachite green 740.74 mg/g 5 [21] 

Graphene oxide Uranium Not reported Not reported [22] 

TiO2-Graphene oxide aerogel Copper 39.8 mg/g Highly 

regenerative 

[24] 

Graphene oxide/chitosan Methylene blue 168 mg/g Not reported [28] 

 

2.2. Photocatalytic degradation 
Photocatalytic degradation of pollutants channels light energy with the purpose of breaking down molecular bonds and 

making smaller molecules which are easier to introduce in the earth cycle of reusability.  

The research groups [31-36] studied modified graphene oxide’s photocatalytic properties against benzene, methylene 

blue, rhodamine B and NO gas, herbicides, all groups postulating the larger use of their material in the case of organic dye 

depollution or herbicide degradation. Photocatalytic degradation is one of the important depollution methods, since the 

solution of depollution provided deals also with the final degradation of the pollutant. In the case of sorbents, the adsorbed 

species must be dealt with, or reused if possible, after removal from water, in the case of photodegradation the pollutants 

follow, after degradation, a normal environmental fate, through microbial degradation and afterwards reintegration in 

nature’s great flow of reusability.  

The groups chose different types of modification, with anatase phase of TiO2 [31], with TiO2-Bi2O3 [34], silver/silver 

chloride [35] and silver nanoparticles [36]. Different types of modification in the graphene oxide material make the 

material more suitable towards different types of photo-degradation, each modification changing the catalytic behaviour. 

Basically, the catalytic behaviour could be tailored via functionalization, and the catalyser can be designed according to the 

particular needs of each pollutant, in order to maximize the degradation rate of a certain type of pollutant if needed or a 
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mixture of pollutants, through proper adjustment of the particles grafted inside the graphene oxide or through the 

modification of the physical properties of the graphene oxide.  

                 

3. Novel sensor materials  
The research in the field of sensors studied in this articles follows the detection of uranyl [39] and nitrate and 

nitrite [37], both important ions in the case of water monitoring. Uranyl fast determination in waters that surround 

mining sites and power plants is one of the main concerns in the nuclear processing industry, and faster, cheaper and 

more sensitive means to monitor this specific nuclide which exists in nature are always highly sought and highly 

welcomed. The limit of detection achieved by the group led by Li M.H. [39] is reported to be as low as 86 pM, with a 

dynamic range that spans two orders of magnitude. Nitrate and nitrite are common contaminants in all waters, their 

presence making many potable sources unsafe to drink. The electrode proposed as sensor by Bagheri H. et al [37] 

constitutes an alternate technique in water monitoring, giving a quick response with a low limit of detection (30 nM – 

nitrate and 20 nM – nitrite) and a good dynamic range (0.1 to 75  µM). The development of good sensor materials can 

replace the need of costly field excursions for sampling and could also help with source monitoring over larger periods 

of time.   

 

4. Materials for sample preparation 
 

Table 2: Sample preparation technique. 

 

Material involved Analytical technique used Improvement type Number of 

cycles for 

reuse 

Reference 

Graphene oxide – silica composite 

reinforced hollow fibers 

Solid phase microextraction of 

sulfadiazine 

Linear dynamic range 5-150 

µg/L 

DL 1.5 µg/L 

disposable [40] 

Magnetite/graphene oxide 

nanoparticles 

Sudan dyes Sensitivity, specificity and 

low cost 

Not 

specified 

[41] 

Graphite oxide Solid phase extraction of 

Copper and Lead 

DL 1.25  µg/L Cu 

DL 2.56  µg/L Pb 

Reusable 

150 times 

[42] 

Graphene oxide/polyaniline 

nanocomposite 

Solid phase extraction for 

pharmaceutical and personal 

care products from wastewater 

Ability to detect trace 

amounts with good recovery 

rates in very complex 

matrices 

Not 

reported 

[44] 

Reduced graphene oxide/Fe3O4/gold 

nanocomposite 

Magnetic solid-phase 

extraction of organo-chlorine 

pesticides 

Agent-free microwave 

assisted method; Linear 

detection range 0.05 – 500  

µg/L 

DL 0.4-4.1 ng/L 

Not 

reported 

[46] 

Magnetic allylamine modified 

graphene oxide-poly(vinyl acetate-co-

divinylbenzene) (MGO-DVB-VA) 

Magnetic solid phase 

extraction of Pb ,Cd, Cu, Ni 

and Co 

DL 37-239  µg/L Not 

reported 

[47] 

Graphene oxide coated column Solid phase microextraction DL 0.0005-0.005  µg/L Not 

reported 

[48] 

Graphene oxide Solid phase extraction DL 0.08-0.65 ng/g 

Good solvent stability 

10 [50] 

 

5. Toxicity of graphenic materials 
The toxicity of graphene oxide materials is rather difficult to estimate, mainly due to the fact that the toxic response 

depends largely on the production method, on the shape of the final composites obtained, on the impurities in the final 

product, which generally increase the toxic behaviour. The main mechanisms of toxicity produced by graphene oxide are 

interference with the electron transport system and activation of the MAPK and TGF-β signalling pathways. Both result in 

cell death. In both cases, the death of cells occurs via graphene mediated ROS (reactive oxygen species) damage.  
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6. Conclusions and perspectives 
One of the main advantages possessed by carbon based materials is its biodegradability after it reaches its final stage 

of usefulness, but it is not the main one. The toxicity of graphene oxide and graphene oxide materials was proved to 

depend highly on the shape and size of those materials, and through a carefully chosen shape the impact on the 

environment through subsequent disposal after the complete life cycle can be minimised sufficiently. The studied graphene 

oxide materials all target pollutants which pose a great concern towards the environment, being they organic in nature 

(dyes, pharmaceutical products, pesticides) or inorganic (hexavalent chromium, lead, uranium, copper ions), and report 

good and very good sorption capacities for the targeted pollutants. The fact that the very same materials can be used 

specifically for their sorption characteristics in other types of application, for example in sensors or sample preparation 

methods or analytical techniques is another important quality and interesting feature, which has very high practical 

importance. The only real challenge that remains in the future is sending those materials to work, in the help of societies 

which still lack access to clean water, a challenge which can only be tackled globally, a challenge which is too great to be 

ascertained by one person or one research group alone. Towards this goal, a more practical aspect would be to unify the 

research methods, all groups that deal with sorbents need to reach the common understanding that they must be able to 

relate each sorbent to what was previously done and to what will be done in the future, and that a more thorough approach 

does not necessarily involve the destruction of creativity and the promotion of routine work.  
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