The Utilization of Activated Carbon/Lignin Biocomposite as Recyclable Sorbent For In-Situ Removal of High-Concentration BTX from Petroleum Wastewater

Sherif A. Younis^{1*}, Mohamed A. Abdel-Aziz¹, Yasser M. Moustafa^{1*}, Moustafa H. Khalil²

¹Analysis and Evaluation Department, Egyptian Petroleum Research Institute Nasr City, 11727 Cairo, Egypt sherifali_r@yahoo.com*; ymoustafa12@yahoo.com* corresponding author ²Chemistry Department, Faculty of Science, Ain Shams University

11566 Abassia, Cairo, Egypt

Extended Abstract

Among varies petroleum pollutants of interest, BTX (i.e., benzene, toluene, and xylene of ortho, meta and para-positions) mono-aromatics has found to be the most environmental problem [1]. Environmental legalization policies are listed BTX as contaminants of emerging concerns (CECs) because of their potential toxic and/or carcinogenic properties for human health or animals and drinking water contamination, even in trace levels [2]. In this work, a facile one-pot co-precipitation process was developed to construct granule activated carbon (gAC)/Kraft lignin (KL) biocomposite (gAC/KL_x) as a new eco-friendly sorbent from recycling industrial wastes of both palm-date pits and pulping black liquor. The synthesized gAC/KL_x biocomposite with defined characteristics using ATR-FTIR, XRD, SEM, BET, TGA, DLS and Zeta potential analyses was utilized as an effective sorbent of environmentally toxic BTX compounds (benzene, toluene and xylene) from petroleum wastewater effluents. Sorption behavior of BTX over gAC/KL_x biocomposites with different ratios of Kraft lignin (x = 33, 50 and 67%) in batch experiments were evaluated using high performance liquid chromatography (HPLC). Interestingly, the gAC/KL showed the highest sorption capacity of BTX at lignin blended ratio of 50%, even from broad ranges of water salinity (up to 100,000 mg/L) and pH values (pH 4 - 9). The sorption behavior of BTX compounds were found to fit better to a type two pseudo-second kinetic (adsorption kinetic rate of BTX at 0.104 g.mg⁻¹.min⁻¹) and Langmuir isotherm models, as confirmed by the higher coefficient of $R^2 > 0.98$. The sorption affinities of the gAC/KL_{0.5} biocomposite with respect to 250 mg/L BTX can be ordered in the sequence Xylene > Toluene \geq benzene with highest monolayer capacities reached to 170.5, 160.5 and 159.7 mg/g, respectively after 6 h. The adsorption mechanism was found to follows the diffusion and hydrophobic sorption mechanisms. Particularly, the possibilities of BTX elution for gAC/KL_{0.5} reuse were evaluated up to five cycles without high significant loss in sorption efficiencies during multiple wastewater treatment. As such, on the basis of batch BTX sorption studies, the gAC/KL_{0.5} is expected to be a promising low cost and high performance new sorbent to be reutilize for real wastewater treatment process and petroleum hazardous decontamination with higher thermal stability (up to 350 °C) and aqueous stability (10% - 21% efficiency loss).

Keywords: Waste Management, Activated Carbon, Lignin-Based Biocomposite, BTX Hazardous, Petroleum Wastewater Treatment.

References

- [1] R. Navarro Amador, L. Cirre, M. Carboni, D. Meyer, "BTEX removal from aqueous solution with hydrophobic Zr metal organic frameworks," *J. Environ. Manage.*, vol. 214,pp. 17–22, 2018. DOI:10.1016/j.jenvman.2018.02.097.
- [2] A. I. Stefanakis, J. A. Becker, "A review of emerging contaminants in water: Classification, sources and potential risks," Impact of Water Pollution on Human Health and Environmental Sustainability, 2015, pp. 57–82. DOI:10.4018/978-1-4666-9559-7.ch003.