Quantification of Protein-Ligand Interaction Using Supported Lipid Bilayer Assisted Biosensors

Donggeun Lee1,2, Youngmo Jung1,3, Taikjin Lee1, Jae Hun Kim1, Seok Lee1, Sang-Kook Han2, Yong-Sang Ryu1, Chulki Kim1

1Sensor System Research Center, Korea Institute of Science and Technology
5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
chulki.kim@kist.re.kr

2Department of Electrical &Electronic Engineering, Yonsei University
50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea

3Department of Mechanical Engineering, Yonsei University
50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea

Extended Abstract
Quantification of kinetics of protein interactions has been a fundamental challenge in biophysics and biotechnology [1],[2]. To investigate the binding kinetics on a cell membrane rigorously, active ligands should be prepared in a controlled environment in terms of the number of binding sites and its kind. Conventional binding assays using ligand immobilization techniques with glue-like layers still have problems typically related to ligand denaturalization and non-specific binding. To demonstrate monitoring real-time binding kinetics between proteins and ligands, we introduce a supported lipid bilayer (SLB) to model the binding kinetics. The role of the supported lipid bilayer here is three-fold: accurate control over the binding sites, structural formation of receptors, and reducing non-specific bindings effectively. We adopted a field effective transistor device capable of reliable observation of protein interactions via its modulated current responses. The binding sites and rate constants of the protein-ligand pair interaction are determined by monitoring the real-time reaction kinetics, demonstrating the possible quantification of protein interactions with a detection limit of picomolar concentration and association constant was about $1 \times 10^9 \text{M}^{-1}$ using SLB assisted biosensors.

References