Proceedings of the 5th World Congress on New Technologies (NewTech'19) Lisbon, Portugal – August 18-20, 2019 Paper No. ICBB 110 (The number assigned by the OpenConf System) DOI: 10.11159/icbb19.110

Signal Crosstalk between Two Different Agrobacterium Two-Component Systems

Minliang Guo, Yujuan Xu, Dawei Gao and Nan Xu

College of Bioscience and Biotechnology, Yangzhou University No. 48, Wenhui East Road, Yangzhou City, Jiangsu, P. R. China 225009 guoml@yzu.edu.cn

Extended Abstract

Bacteria often use the so-called two-component system to transduce signal. A typical bacterial two-component system is comparatively simple and comprises two components, a sensor with histidine kinase activity and its cognate phosphorylatable response regulator [1, 2]. Most bacteria encode dozens of two-component signaling pathway [2]. Although both the histidine kinase sensor and response regulator in each two-component system are part of large, paralogous protein families that are highly similar at both sequence and structural levels, relatively little interaction between histidine kinase sensor and non-cognate response regulator was found, indicating that individual two-component signal transduction systems are highly specific, well insulated and rare cross-talk [3]. The high specificity of interaction between sensor and its cognate response regulator is accordant with the requirement for maintaining the faithful flow of signal through two-component system. Agrobacterium uses chemotaxis system to sense a large number of chemicals released by wounded host and VirA/VirG two-component system to induce the virulence gene expression [4, 5]. Chemotaxis signal transduction system is a special case of two-component system. Its histidine kinase CheA lacks transmembrane sensor domain and has three cognate response regulators, CheY1, CheY2 and CheB. Although the atypical two-component system, chemotaxis system is very different from the typical VirA/VirG two-component system, both of them are showed to be involved in Agrobacterium tumorigenesis [6]. Our previous study suggested that chemotaxis signaling and virulence induction signaling may have crosstalk in Agrobacterium [3]. Here, three lines of experimental evidences demonstrate the signaling cross-talk between these two two-component systems. 1) Chemotaxis signal-driving run pattern of Agrobacterium cheA-deletion mutant could be adjusted by the complementation of VirA. 2) Bacterial two hybrid assay showed that VirA interacts with CheY2 and CheA interacts with VirG. 3) In vitro pull-down experiment showed that VirA can pull-down CheY2.

References

- Z. Huang, X. Pan, N. Xu and M. Guo, "Bacterial chemotaxis coupling protein: Structure, function and diversity," *Microbiol. Res.*, vol. 219, pp. 40-48, 2019.
- [2] A. F. Alvarez, C. Barba-Ostria, H. Silva-Jimenez and D. Georgellis, "Organization and mode of action of two component system signaling circuits from the various kingdoms of life," *Environ. Microbiol.*, vol. 18, no. 10, pp. 3210-3226, 2016.
- [3] M. Guo, Z. Huang and J. Yang, "Is there any crosstalk between the chemotaxis and virulence induction signaling in *Agrobacterium tumefaciens*?" *Biotechnol. Adv.*, vol. 35, pp. 505-511, 2017.
- [4] M. Guo, X. Bian, X. Wu and M. Wu, "*Agrobacterium* mediated genetic transformation: history and progress," in *Genetic Transformation*, M. A. Alvarez, Ed. Rijeka, Croatia: InTech, 2011, pp. 1-28.
- [5] M. Guo, J. Ye, D. Gao, N. Xu and J. Yang, "*Agrobacterium*-mediated horizontal gene transfer: Mechanism, biotechnological application, potential risk and forestalling strategy," *Biotechnol. Adv.*, vol. 37, pp. 259-270, 2019.
- [6] Z. Huang, Q. Zhou, P. Sun, J. Yang and M. Guo, "Two Agrobacterium tumefaciens CheW proteins are incorporated into one chemosensory pathway with different efficiencies," *Mol. Plant Microbe Interact.*, vol. 31, no. 4, pp. 460-470, 2018.