Evaluation the Antimicrobial Activity of LDPE Nanocomposites Based on TiO₂ Nanostructure for Food Packaging Applications

Nasser A. Al-Tayyar¹, Ahmed M. Youssef² and Rashad Al-Hindi¹
¹Biology Department, Faculty of Sciences, King Abdulaziz University
Jeddah, Saudi Arabia
²Packaging Materials Dept., National Research Centre
33 El-Bohouth St. (Former El-Tahrir St.) Dokki, Giza, Egypt

Extended Abstract

This work aims to prepare and characterize novel nanocomposite materials based on low density polyethylene (LDPE) and titanium dioxide (TiO₂) nanostructure for food packaging applications. The fabricated nanocomposites films were examined by X-ray diffraction pattern (XRD) and mechanical properties. The XRD results confirmed that the formation of LDPE nanocomposites films containing different concentrations of TiO₂ nanostructure. The mechanical properties of the prepared LDPE/TiO₂ nanocomposites were investigated. Moreover, the thermal properties of the prepared films displayed that the good enhancement of the thermal stability of the prepared film after addition of TiO₂ nanostructure. Furthermore, the permeability of oxygen transmission rate (GTR) and water vapor transmission rate (WVTR) of the prepared LDPE nanocomposites were evaluated. Moreover, the antimicrobial activity of the prepared films against gram positive (Staphylococcus aureus) bacteria and gram negative (Pseudomonas aeruginosa) bacteria were investigated.

Keywords: LDPE, packaging, TiO₂ nanostructure, mechanical properties, permeability, antimicrobial activity.

References