Tailoring of Two-dimensional Electron Gas Density in Thin Film Oxide Heterostructure via Atomic Layer Deposition

Seong Hwan Kim, Hye Ju Kim, and Sang Woon Lee

Department of Energy Systems Research and Department of Physics, Ajou University Suwon 16499, Republic of Korea pucksae77@ajou.ac.kr; ajuphysics@ajou.ac.kr; slee01@ajou.ac.kr

Extended Abstract

Recently, oxide heterostructure-based two-dimensional electron gas (2DEG) has received intensive attentions owing to their interesting properties. The model system is epitaxial LaAlO₃ (LAO) grown on single crystalline SrTiO₃ (STO) substrate.[1] Electrons with a density of $10^{13} \sim 10^{14}$ /cm² were observed which moves freely along in-plane direction while they are confined within ~2 nm (out-of-plane direction). Unfortunately, the adjustment of electron density was not available for the epitaxial LAO/STO heterostructure. In addition, the growth of epitaxial LAO film requires a high-temperature process (700 ~ 800°C) using pulsed laser deposition technique.

Here, we demonstrated a creation and control of 2DEG at the interface of non-epitaxial Al_2O_3/TiO_2 thin film heterostructure using atomic layer deposition (ALD). The electron density can be tailored from ~ $10^{11}/cm^2$ to ~ $10^{14}/cm^2$ by the control of ALD process temperature because the electrons are coming from oxygen vacancies at the interface of Al_2O_3/TiO_2 heterostructure of which oxygen vacancy density is governed by kinetics during the ALD process. Electron density up to ~ $10^{14}/cm^2$ was achieved at the interface of the Al_2O_3/TiO_2 heterostructure which is 100 times higher than that of the conventional semiconductor heterojunction such as AlGaAs/GaAs.

The 2DEG at Al₂O₃/TiO₂ heterostructure can be applied for the development hydrogen (H₂) gas sensor. A highperformance, transparent, and extremely thin (<15 nm) hydrogen gas sensor was fabricated using 2DEG at the interface of Al₂O₃/TiO₂ heterostructure grown by ALD. [2] Palladium nanoparticles (\approx 2 nm in thickness) are used on the surface of the Al₂O₃/TiO₂ thin film heterostructure to detect H₂. Both oxides with a wide bandgap (>3.2 eV) have transmittance of 83% in the visible spectrum, which allows for a transparent sensor. The Pd/Al₂O₃/TiO₂ gas senor detects H₂ gas quickly with a short response time of <30 s even at room temperature which outperforms conventional H₂ gas sensors. This sensor responds to a wide range of H₂ concentration, especially from ~5 ppm to 1%, implying a promising candidate for a general H₂ sensor. Interestingly, the Pd/Al₂O₃/TiO₂ heterostructure. Particularly, a sensitivity was as low as 3% for a 2DEG density of 5.6 × 10¹³ cm^{-2} while the sensitivity was improved from 6% to 43% as the electron density decreased from 5.6 × 10¹³ cm^{-2} to 4.1 × 10¹¹ cm^{-2} . Besides the sensor application, other application of 2DEG will be introduced in the presentation.

References

- [1] A. Ohtomo and H. Y. Hwang, "A high-mobility electron gas at the LaAlO₃ /SrTiO₃ heterointerface," *Nature*, vol. 427, pp. 423–426, 2004.
- [2] Sung Min Kim, Hye Ju Kim, Hae Jun Jung, Ji-Yong Park, Tae Jun Seok, Yong-Ho Choa, Tae Joo Park, Sang Woon Lee, "High-Performance, Transparent Thin Film Hydrogen Gas Sensor Using 2D Electron Gas at Interface of Oxide Thin Film Heterostructure Grown by Atomic Layer Deposition," *Advanced Functional Materials*, vol. 29, p. 1807760, 2019.