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Abstract – Throughout the COVID-19 pandemic, disease-modeling has guided government health officials in choosing appropriate 

interventions. However, most current models simulate disease spread on a more generalized scale, lacking specificity for localities such 

as towns or counties, leading to one-size-fits-all policies being instituted on the country or state-wide-level. However, localities differ 

in many social determinants of health, which impact disease dynamics therefore necessitating models tailored to individual 

locations. This research aims to answer this question: what local factors affect COVID-19 outbreak severity and intervention 

effectiveness? To do this, a novel agent-based disease model was created using NetLogo to simulate contextualized COVID-19 disease 

dynamics at the local level. Model inputs include population demographic composition, area size, vaccination ratio, interventions (mask, 

test-and-isolate, or lockdown), and compliance rate. Agents representing the simulated local population are assigned specified traits, 

and become “susceptible”, “exposed”, “infected”, “recovered”, “quarantined”, or “dead” as they interact with other agents. The model 

was validated using data from state and local health agencies for Westchester County, NY (84.2% accuracy). A sensitivity analysis 

demonstrated that a higher elderly population, a lower young population, a lower vaccination rate, and weaker interventions were all 

factors that increased outbreak severity. A comparison of selective localities representing metric axes of high/low age and high/low 

vaccination was conducted for four different U.S. counties and showed that 1) any intervention would dramatically reduce locality 

variations and 2) interventions have higher impact in higher risk localities. This model enables local officials to better focus limited 

resources when making health related decisions, and a website (www.localcovidmodel.org) has been created for model access. 
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1. Introduction 
1.1. COVID-19 and Public Health 

COVID-19, caused by the emerging virus SARS-CoV-2, has caused a dangerous pandemic that infected hundreds of 

millions globally [1]. Non-pharmaceutical interventions have been some of the most important and effective strategies in 

use during the pandemic, and it is shown that countries which act early to institute these interventions see far fewer cases 

and deaths than those who do not [2]. However, many interventions were prematurely lifted because of uninformed decision 

making [3], resulting in pandemic resurgences despite efforts to stop its spread.  

Disease modeling can be used to predict the future outcome of a disease outbreak [4][5]. These predictions can be 

helpful for organizations such as the CDC to create health guidelines and interventions to control the pandemic. 

 
1.2. Current Modeling Applications 

Currently, much disease modelling for COVID-19 is done on the nation-wide and state-wide level [1]. Though these 

forecasts are helpful for national and state guidelines, the data produced by these models are not tailored specifically to 

cities, towns, school districts, or counties, often forcing such localities to follow one-size-fits-all guidelines from the state.  

The age and vaccination status of an individual plays a major role in their susceptibility and transmissibility [6][7]. 

Thus, the age distribution and vaccination rate of a population will influence the risk-level of a community to COVID-19. 

As a result, communities will vary in their needs for protection, making a one-size-fits-all approach potentially suboptimal.
 
1.3. Compartmental Disease Modelling 

Compartmental disease models use differential equations to describe the movement of people between compartments 

(susceptible, infected, etc.). Because of this, many compartmental models do not recognize each person as an individual, 

and instead assume a homogeneous population where all members transmit disease equally [8][9]. This may lead to 

inaccuracy, as disease spread is inherently heterogeneous, meaning that some will be more infectious than others [3]. Since 

http://www.localcovidmodel.org/
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heterogeneity is more prevalent in small populations, it is difficult to capture certain local differences with standard 

compartmental models. In addition, many compartmental models are fitted with real life data to produce accurate results 

[10]. This process can take months, especially in the beginning of a pandemic when no other data is available. 

 
1.4. Agent-Based Disease Modeling 

An agent-based model is a type of disease model that represents each individual person in real life as an agent. Agents 

are guided by simple and programmable instructions and can interact with each other by movement and contact or by 

forming a network [11]. Agents are often assigned unique parameters such as age and vaccination status [11]. Unlike 

compartmental models, the individuality of agents represented by this type of model makes it ideal for simulating disease 

heterogeneity and small-scale social interactions (Gomez et al., 2020). Agent-based models are the preferable model for the 

purposes of this research. 

NetLogo is a programming language and IDE specifically used to develop agent-based models. Several previous 

studies have been done on disease models developed using NetLogo, including a simulation of COVID-19 spread in 

Piedmont, Italy [12], a simulation of COVID-19 spread in refugee camps [8], and a simulation of COVID-19 based on the 

effects of different sized social gatherings [13]. Although the above models created using NetLogo have explored localized 

simulation, the models are programmed on an ad hoc basis, only simulating the original locality it was created in. A localized 

disease model that tailors its results to different localities given user input is needed in order to study differences between 

localities or function as a decision-making tool for local administrations. 

 
1.5. Research Goals 

A novel agent-based disease model was developed using NetLogo to simulate how COVID-19 spreads in a locality. 

This model simulates three different interventions: mask mandate, testing and isolating, and lockdown. By using the 

demographics and current pandemic management strategies of the locality as an input, the model can produce different 

results for each locality that are tailored to its population and predict which interventions are most appropriate or effective 

for that region. Using the model, this research will answer the following question: what local factors affect COVID-19 

outbreak severity and how does the impact of interventions differ from locality to locality? 

 

2. Methods 
2.1. Model Development 

This model was built using the agent-based modelling software NetLogo [14], which consists of mobile agents 

(representing humans in this model) that move and interact on a gridded canvas separated into square patches.  

The user of this model can specify the population size, area, initial infected agents, vaccination rate, age 

demographics, intervention used (mask mandate, testing and isolation, lockdown), and compliance rate to such 

interventions. As the simulation starts, agents are randomly selected to be young (age 0-20), adult (age 21-59), elderly 

(age 60+), vaccinated, or unvaccinated based on the specified age demographics and vaccination rate (assuming same 

chance of vaccination in each age group) and are randomly chosen to show compliance based on the compliance rate. 

During a simulation, the agents move in the direction they are facing and turn a random amount between zero and fifty 

degrees each day and will interact with other agents that are on its patch, having a chance to infect other agents or become 

infected. The simulation ends when no more agents are infected. The simulation records the cases over time, deaths over 

time, total cases, and total deaths. Fig. 1 shows the model and the NetLogo interface. 
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Each agent can go through seven stages of infection: susceptible, exposed (infectious but asymptomatic), infected 

(symptomatic), quarantined, recovered, and dead (Fig 2). When a susceptible agent interacts with an exposed or infected 

agent, they have a chance of entering the exposed state. After passing through their incubation period, agents become 

infected. Agents stay infected during their recovery time, before either recovering or dying, based on the mortality rate. 

Recovered agents cannot become re-infected.  

This model can simulate three different non-pharmaceutical interventions: mask mandate (cloth mask), test and isolate, 

and lockdown. It is assumed that 75% of agents will comply [15]. To simulate a mask mandate, the infection chance of all 

complying agents will be reduced by 50% [11]. To simulate widespread testing, infected and symptomatic individuals who 

show compliance will be moved to the quarantined state, reducing their movement and interaction with other agents. To 

simulate a lockdown, agents showing compliance will group up into clusters of three or more then all become quarantined. 

The model was parameterized using published literature on COVID-19 patient outcomes (Table 1). 

 
Table 1: The six constants used to parameterize the model and their values, some of which differ by age 

Parameter Description Value Source 

Susceptibility 

The likelihood that an individual 

shows symptom after contact with an 

infected individual 

Age 0-20: 39% 

Age 21-59: 81% 

Age 60+: 81% 

[6] 

Mortality Rate 

The likelihood that an individual 

shows a fatal outcome during their 

infection 

Age 0-20: 0.1% 

Age 21-59: 1.4% 

Age 60+: 26.4% 

[16] 

 

Recovery Time 
The time it takes for an infection to 

cease after symptoms arise 

Age 0-20: 13.4 days 

Age 21-59: 14.4 days 

Age 60+: 14.7 days 

[7] 

 

Incubation Period 
The time it takes for symptoms to 

start after the individual is infected 

Age 0-20: 5.0 days 

Age 21-59: 5.8 days 

Age 60+: 7.6 days 

[17] 

 

Mask Effectiveness 
The rate at which a mask reduces 

infectiousness (cloth mask) 
50% [18] 

Compliance Rate 
The proportion of the population that 

comply with intervention.  
75% [15] 

 
2.3. Procedures 
2.3.1 Model Validation Test 

First, the model was validated against real case data from Westchester County, NY [19]. The test consisted of 20 

simulations of a 150-day period from 9/1/20 to 1/28/21. The population size, population density, number of agents 

exposed or infected on 9/1/20, and age demographics of Westchester County were used as inputs to the model. During the 

simulation, masks and testing were mandated (75% compliance rate assumed) to reflect the policies in New York State at 
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the time. The results from the simulations were compared to the real case data from the time period and graphed using the 

statistical programming language R [20]. The overall accuracy for the model validation was computed averaging the 

percent errors between real and simulated cases of all 150 days and subtracting that value from 1. 

 
2.3.2 Sensitivity Analysis 

A sensitivity analysis was conducted on the proportion of population aged <20, proportion of population aged >60, 

and intervention used, with controls shown in (Table 2). In the tests with the percent elderly and percent young, 5 trials 

were conducted at each 10% interval. For each intervention scenario, 20 trials were conducted. 

 
2.3.3 Comparison of Localities 

Disease dynamics in four U.S. counties were compared using the model. To ensure a meaningful comparison, one 

county was chosen from each category of median age and vaccination rate (high age/low vaccinations, low age/high 

vaccinations, etc.). Data about the age demographics of each county were collected from the U.S. Census Bureau, and data 

about the vaccination rate of each county were collected from https://covidactnow.org/ (Table 3). In each simulation, a 500-

agent sample was used to keep the population size constant across localities and a compliance rate to interventions of 75% 

was assumed. To observe the effects of interventions in each locality, masking, testing, and lockdowns were simulated. 
2.4. Data Analysis 

The data was graphed using the statistical programming language R [20]. In the sensitivity analysis, a regression 

analysis was performed to determine if the age distribution had a significant effect on infections and deaths. In addition, an 

ANOVA test was performed to determine if infections and deaths differed significantly among the three interventions 

simulated. A Bonferroni Correction post-hoc test was then conducted to find which interventions drove this difference. 

 
Table 2:  Control variables for each part of sensitivity analysis. 

Variable Controls 

Percent Elderly (Age 

>60)  

no intervention 

Population Size: 500 

Vaccination Rate: 40% 

Compliance Rate: 75% 

Percent Young (Age 

<20) 

no intervention 

Population Size: 500 

Vaccination Rate: 40% 

Compliance Rate: 75% 

Intervention Used Population Size: 500,  

Percent Young: 20% 

Percent Elderly: 20% 

Vaccination Rate: 0% 

Compliance Rate: 75% 

Table 3: Locality specific parameters for each county as of 

7/14/21. 

 

County 
Percent 

Aged 0-20 

Percent 

Aged 21-

59 

Percent 

Aged 60+ 

Percent 

Vaccinated 

Monterey, 

CA 
 29  52  19  54 

Levy, FL  21  45  34  32 

Hunterdon, 

NJ 
            22             51             27              54 

Coles, IL             24             54             22             33 

3. Results 
3.1. Model Validation Test 

The model validation test showed that the real Westchester County case data was almost always within the range of 

the simulated data as shown in Fig. 3. The model tended to overpredict by a minor amount near the beginning of the 

simulation, which resolved as the simulation progressed (Fig. 4). The average error increased as the simulation progressed, 

which can be attributed to the increasing overall case numbers seen later in the outbreak. The overall accuracy for the model 

was 84.2%, calculated as the correspondence between the mean of the simulations and the real data.  

https://covidactnow.org/
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3.2. Sensitivity Analysis 

The results from the sensitivity analysis show that increasing the percentage of elderly in a population also increased 

the total infections and deaths, in effect making the outbreak more dangerous (Fig. 5). Each 1% increase in elderly 

subpopulation resulted in an average increase of 0.408 (P<0.05) total deaths and 0.249 (P<0.05) total infections (Table 4). 

The change in elderly population has a much stronger effect on the deaths than the infections with an r2 value of 0.8827 for 

deaths and an r2 value of only 0.1161 for infections. Overall, a population with a higher elderly subpopulation can be much 

more susceptible to increased infections and deaths from a COVID-19 outbreak.  

 

 
 

However, the sensitivity analysis showed that the effect of increasing the young subpopulation had a drastically 

different effect on disease dynamics (Fig. 6). For each percent increase in youn/g population, the total infections decrease 

by 1.104 (P<0.05) and the total deaths decrease by 0.0151 (P<0.05) (Table 5). Unlike the elderly subpopulation, the young 

subpopulation had a stronger effect on the infections (r2=0.7256) rather than deaths (r2=0.2681), and a more significant 

effect with a lower p value for infections. Overall, an increase in the young subpopulation tends to make a population less 

susceptible to both infections and deaths from a COVID-19 outbreak.  
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Focusing on three intervention scenarios, Fig. 7 shows that lockdowns decrease both cases and deaths the most, 

followed by masking and testing respectively. In the absence of both vaccination and interventions, a substantial proportion 

(~73%) of the population became infected, showing the necessity of interventions to control the epidemic. According to an 

ANOVA test, the means of the four groups differed significantly (P=1.0356x10-30 for infections, P=1.2666x10-17 for deaths). 

A Bonferroni Correction post-hoc test with an alpha level of 0.0125 (due to 4 scenarios being present) reveals that the 

significant difference is mostly between the absence and presence of intervention (P<0.0125 between no intervention and 

every intervention); thus, all interventions – even though they differ in strength – are effective and can significantly reduce 

outbreak severity. There was a smaller difference between lockdown and masking (P<0.0125) but no significant difference 

between masking and testing (P>0.0125), showing that some interventions are more effective than others (Table 7) 

   
3.3. Locality Comparison 

First, 100 simulations were performed for two localities – Monterey, CA and Levy, FL – without interventions. From 

this data, the population based on Levy County showed significantly higher disease spread than that of Monterey County. 

Fig. 8 shows that Levy demonstrated higher mean infection peak than Monterey, as well as a later infection peak. While the 

simulated infections in Monterey decreased, the simulated infections in Levy continued to increase, resulting in longer 

outbreaks overall. Levy also demonstrates a higher rate of death than Monterey, continuing to increase rapidly after the 

death increase in Monterey seemed to plateau (Fig. 9). This may be attributed to Levy’s larger elderly subpopulation. 
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Next, outbreaks from all locations were simulated with the addition of the three intervention strategies discussed earlier: 

mask mandate, test and isolate, and lockdown, where it is assumed that 75% of agents will comply to each intervention. 

Each combination of intervention in each county was simulated 50 times; the simulated data is shown in Fig. 10. In all 

scenarios, counties with higher age and lower vaccinations had a more severe epidemic. However, the 95% central 

tendencies for both case and death count per county overlapped more often when interventions were added (Fig. 10). This 

observation shows that the risk level of the counties differed less with interventions than without, showing that interventions 

have a greater impact where the COVID-19 spread is more severe. 

 

 

4. Discussion 
4.1. Conclusion 

In this research, a novel agent-based model was created using NetLogo to simulate disease spread within local 

populations, with the ability to tailor simulation to a locality based on user input. This model achieved 82.4% accuracy 

when validated against Westchester County case data. Comparing masking, test-and-isolate, and lockdowns, lockdowns 

were found to be the most effective intervention, with masking second and testing third. It was found that a higher elderly 

population, lower young population, lower vaccination rate, and weaker interventions were driving factors that cause some 

localities to have more dangerous COVID-19 outbreaks. The comparison of localities showed that interventions tend to 

have a higher impact in high-risk localities. 
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The effects of age demographics on disease spread can likely be attributed to the differences in susceptibility, mortality 

rate, recovery time, and incubation time between age groups (Table 1). For example, susceptibility had the greatest 

difference from young to adult (42%), while mortality rate had the greatest difference from adult to elderly (25%). This was 

a major contributing factor to the effects of young and elderly population on disease dynamics and could explain why 

altering the young population had a greater effect on infections while altering the elderly population had a greater effect on 

deaths. Because interventions such as mask mandates, testing, and lockdowns differ in strength and localities differ in their 

population-based risk level, it may be beneficial for different localities to implement different levels of intervention based 

on their risk level. Through choosing the intervention most appropriate to its population, a locality can both maximize the 

effect of the intervention and minimize its socioeconomic cost. 

 
4.2. Applications 

This model can be used by local public health administrators as a tool to make COVID-19 related public health 

decisions. The novelty of this model stems from its ability to allow local health administrators to generate locality-specific 

data, instead of relying on state or country recommendations/guidelines to do so. While this model was parameterized for 

COVID-19 in this research, the model can be applied to many other infectious diseases such as influenza through 

parameterizing the constants (Table 1) to fit other diseases. A website (www.localcovidmodel.org) has been created for 

model access. 

 
4.3. Limitations and Future Work 

One limitation to this research is that this model was built to simulate the original COVID-19 variant, which may be 

less infectious and more deadly than current variants, such as omicron, or future COVID-19 variants. Variants may also be 

more likely to cause breakthrough cases and reduce overall vaccine effectiveness. This may cause the model to underpredict 

cases and overpredict deaths if compared to more recent data where variants are more prevalent. In a future version of this 

model, the age-specific constants (Table 1) could be changed to simulate new variants. Future work could be done to explore 

how different variants affect disease dynamics if different actions should be taken based on the variant identified. 

This model also assumes that individuals who are recovered cannot become re-infected, which may not always be true. 

If re-infection occurs in a population, an outbreak may last longer or cause resurgence. One way to address this issue is to 

convert recovered agents back to the susceptible state after a specified period of time. However, the effects this could have 

on a localized simulation is relatively limited, as the population size is smaller, and outbreaks typically end before agents 

would be eligible for re-infection. This may be a greater concern for a simulation with a larger, interconnected population. 
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