
Proceedings of the International Conference on Civil Engineering: Innovations & Advancements (ICCEIA 2024) 
Barcelona, Spain - August 25-27, 2024  
Paper No. ICCEIA  104  
DOI: 10.11159/icceia24.104 

 ICCEIA 104-1 

 

A Framework for an Optimization Process to Locate Electric Vehicle 
Charging Stations 

 
Abdullah Al-Juboori 1, Akmal Abdelfatah1*, Tarig Ali1 

1 American University of Sharjah 
Sharjah, UAE 

* Corresponding author: akmal@aus.edu 
 

Abstract - To reduce the huge amounts of harmful gases emitted from vehicles emissions and to improve the environmental conditions, 
countries need to start planning and encouraging the use of electric vehicles (EVs). However, before extensively using EVs, charging 
stations need to be planned to meet the changing needs of electric vehicles. These charging stations need to be placed at various locations 
so that they can serve the maximum number of EVs, without significant delays. In this paper, a procedure for optimizing the locations of 
EVs charging stations is presented.  The proposed approach uses the simulation software DYNASMART to simulate different percentages 
of EVs under different traffic congestion levels. To be able simulate EVs in DYNASMART, two main components have to be coded in 
the software. First, a subroutine is added to simulate EVs (i.e., tracking the battery charge level).  The second component considers the 
operations within the charging stations.  Additionally, an optimization procedure is proposed to optimize the location of EVs charging 
stations. The problem considers predefined possible locations of the charging stations based on the electric grid system (m possible 
locations).  The optimization procedure seeks to determine the best location for a set of (n) charging stations (n ≤ m). The objective 
function of this model includes two components, which are the waiting and traveling time to the charging station and it is subject to 
several constrain. 
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1. Introduction 

As reported by the U.S. international energy outlook of the 2023, almost 45% of the total energy consumption [1]. 
Additionally, a report by International Energy Agency in 2015 stated that 23% of the greenhouse gasses emission is produced 
by the transportation sector [2].  Therefore, alternatives to conventional vehicles need to be considered. EVs are one of these 
alternatives as they nowadays being considered and gaining a great attention in different countries around the world for their 
benefits [3]. It is expected that the EVs will represent between 29% to 54% of all vehicles globally in 2050 [1]. There are 
several advantages of EVs such as they can reduce air pollution, reduce greenhouse gases emission, have more efficient and 
economical operation compared to normal vehicles. According to research by TU et al. [4], the implementation of electric 
taxis in China resulted in a significant reduction in the carbon emission.  In addition, deploying EVs will result in reducing 
the demand on fossil fuels and will lead to a cleaner environment. China is one of the countries that encourages residents to 
buy EVs through implementing preferential policies and reducing related consumption taxes [5, 6]. Nowadays in the city of 
Dalian in China, people favor buying an EV over normal cars. The city is applying a no-purchase-tax policy and there are 
more than 2000 vehicles used as means of public and private transportation such as buses and taxis [6]. To satisfy the needs 
of EVs recharging, there are some charging stations nowadays that are located at some parking spaces.  However, this will 
not be enough to satisfy the rapid increase in the number of EVs as here will be a need for on street charging stations. For 
example, the Chinese government invested a lot of money in preparing for the EVs such as constructing charging stations’ 
infra-structure [5].  Charging stations cannot be combined with the existing gas stations as there are major safety concerns. 
The process for charging an EV requires a longer time as compared to the time required for refueling a normal vehicle.  
Accordingly, the impact of EVs charging station on traffic congestion has to be considered.   Therefore, the size and location 
of the charging stations need to be planned accurately. 

In this paper, an optimization model is proposed to minimize the sum of waiting and travel time to the charging stations, 
which is subject to several constraints. Further-more, solution procedures will be developed to solve the proposed 
optimization model.  
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2. 2 Literature Review 
Several researchers investigated the impact of EVs on the traffic stream. Different optimization models were 

developed to optimize the size and location of charging stations. In addition, other studies look at the electrification of 
public transport and some study the impact of EVs on traffic.  In general, different approaches have been considered for 
this problem as they can be classified into the three categories Integer Programming (IP), Mixed Integer Programming 
(MIP) and other optimization models.  The following subsections provide a brief discussion of these approaches, the use 
of EVs in public transportation, the impact of charging stations on traffic performance, and the charging facilities 
installation. 

 
2.1.  Integer Programming Optimization Models 

Firstly, several integer programming problem optimization models [4, 6, 7] were developed. In one of these studies 
[7], the authors developed an optimization model, and the objective of that model was to minimize two different costs 
including the waiting time cost of the EVs and the cost of operating the charging stations. This model is a binary 
programming which is a special case of integer programming [7]. The solution procedure is based on the exhaustion 
method or the implicit enumeration method [8].  It was concluded that the ratio of utilization of the charging stations in 
this paper found out to be better than that planned by the government. Another optimization model, which considered a 
nonlinear integer programming formulation, was developed and the objective of this model is to minimize the time cost 
of the driver of EVs [6]. A queuing model was used to determine the waiting time of EVs at the charging stations. The 
SCE-UA algorithm (or hybrid evolutionary algorithm), which is a heuristic algorithm is used to solve the optimization 
problem [6]. This method of solving is a commonly used method, and it is applied in different research studies [9, 10, 
11].  Moreover, it is found out in a research that it is necessary to predict the driver charging behavior (charging at the 
nearest station or other one) before optimizing the location of charging stations [6]. 

 
2.2. Mixed-Integer Programming Optimization Models 

An optimization model is developed to locate the charging stations to minimize the total construction cost using 
mixed-integer formulation [12]. To solve the model, different heuristic methods were proposed such as iterative mixed-
integer linear pro-gram, greedy approach, effective mixed-integer linear program, and chemical reaction optimization. 
Several simulations were performed in the study using the four different solution methods [12]. It is found out that each 
method has advantages and disadvantages, and the choice of the appropriate method is based on the need. Moreover, in 
another research a mixed-integer non-linear optimization model is developed to minimize the sum of the land cost, 
charging station construction cost, and electric vehicles loss [13]. A genetic algorithm is used to solve the optimization 
model [13].  

In addition, another model is developed to optimize the location of the charging stations. The objective of this model 
is to minimize the sum of the cost of investment at the beginning, the cost of operating the charging station and the cost 
of charging. The solution procedure adopted a hybrid-based particle swarm optimization. The number of the EVs is 
predicted in the study and the area is divided into smaller areas. After applying the model and solving it, the results 
indicated that seven charging stations are required as an optimal number of [14]. Moreover, a mixed-integer nonlinear 
optimization model was developed to minimize different costs such as the costs of charging stations (cost of constructing 
the charging station and or adding more chargers to an existing charging station), distribution network expansion, voltage 
regulation and protection device upgrade which is subjected to different constants.  After convexifying all the problem 
constraints in the objective function, a data set was applied to evaluate the impact of each constraint on the objective 
function. Since the developed objective function developed is based on cost so it is applicable for different locations 
[15].  In addition, Chen et al.  used mixed-integer linear programming model must develop an optimization model to 
locate the charging stations. The objective function considers two different costs including the investment cost and 
transportation cost of EVs to the charging station and the objective is to minimize the sum of the two costs. Similar to 
the previous research, a heuristic algorithm, which is an improved genetic algorithm was used to solve the optimization 
problem [16]. 

 
 

2.3. Other Optimization Models 
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Efthymiou et al. conducted a study to locate the charging infrastructure for EVs. No optimization model was developed 
in this study. To provide the best case for the number of charging stations and their locations, genetic algorithms were used 
based on the data collected for the city of Thessaloniki in Greece. It is found out that building 15 charging station will be 
enough to cover 80 percent of the charging demand of the city [17]. An improved genetic algorithm is proposed by Wang at 
al. [18] and it is called generic solution for multi-objective optimization problem. Different simulations were performed 
using MATLAB to validate the model and to check the im-proved genetic algorithm. After performing three different 
simulations, it is found out that the method of locating the charging station is practical [16]. An optimization objective 
function that includes two components, which are the investment and transportation cost, and the goal is to minimize the two 
costs was developed in another research. This model is solved using optimized genetic algorithm, which is called Optimized 
Location Scheme for electric charging stations (OLoCs), which gives a heuristic solution since the problem of locating the 
charging stations is an NP-hard or complex problem. To verify the model developed in the study it was applied to a case 
study of the Tapas Cologne town.  The OLoCs locates 11 charging stations out of 16 proposed charging stations for this town 
[19]. 

 
2.4. Public Transport Electrification 

An optimization model for the location of electric taxies’ charging stations to maximize both the electric taxi service 
level and the charging service level was considered in some research [4]. Electric taxi service level is measured by the 
distance travelled by all the electric taxi with the longer distance means the better service. Furthermore, the charging service 
is measured by the total waiting time at all charging stations with lower waiting time means better service. In order to perform 
the optimization process, a maximization formulation is developed to maximize electric taxi service level and the charging 
service level. The objective function in the formulation includes the total distance travelled by all electric taxis and the total 
waiting time at all charging stations and the solution is achieved through applying a genetic algorithm. 

 
2.5. The Impact of Charging Stations and EVs on Traffic 

Other studies were conducted to investigate the impact of EVs and charging stations locations on traffic. The existing 
car-following model, which is used nowadays to investigate the complex traffic phenomena cannot totally be used for testing 
EVs driving behaviors since it does not include one important feature of electric vehicle, which is the driving range unless it 
improved to include electric vehicles features.  Firstly, a study proposed a new car-following model that includes the driving 
range feature of EVs to study the effect of driving range on the traffic flow [20]. There were several assumptions including 
EVs are distributed uniformly and there is a charging station along the road that serves one EV at one time. It is concluded 
that at short driving range, the increase in the driving range will increase the speed significantly (changing the driving range 
from 8 to 12 km will result in an increase in the average speed by 33%). However, at long driving range there will be an 
increase in the speed when increasing the driving range but at a lower rate (increasing the long driving range from 20 to 24 
km, average speed only increases by 12%). Another study tried to evaluate the impact on the traffic with a large penetration 
of EVs into the road network [21].  A model of a road network was established and 30,000 EVs were simulated to drive in 
that road network that has 9 fast charging stations. It is found out that the roads with charging stations are more congested 
than the other roads with lower average speed and the congestion stays for a long time. The authors apply the shortest path 
for the EVs to choose the nearest charging station. It is found out that this strategy is not efficient in a network that has a 
high penetration of EVs since it will cause heavy traffic congestion around the charging stations location [21]. 

 
2.6. Charging Facilities Installation   

Chen et al. [22] developed a model to offer means that describe how the charging lanes and stations work and how it 
will be installed. The research is conducted on a long corridor that has charging stations, which are uniformly distributed 
along the corridor and charging lanes. Charging lanes are not full lanes but they are provided in segments of different length. 
There are several assumptions such as drivers who choose to charge their EVs using the charging stations will experience 
some delay but for the drivers who choose to charge using the charging lanes will charge faster with-out any delay. Also, 
drivers who choose to charge using charging lanes need to add some devices in their cars that allow for charging from the 
charging lanes and need to pay more than charging in the stations. According to the results, people with high value of time 
will use to charge using charging lanes. The model includes a charging choice model, which has three types of drivers; high 
value of time and they choose to charge with the charging lanes, low value of time who choose to charge in the charging 
stations, and people who have no preference and they do not care whether to charge with charging stations or lanes. It was 
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concluded that charging lanes are competitive compared to charging stations and drivers are charging their vehicles 
using charging lanes whether it is operated publicly or by private companies [22].  

 According to the previous literature, most of the research optimization models are concentrating on different costs 
and grid systems. However, limited research considers waiting time at the charging station as a decision variable in the 
optimization objective function. In addition, the vast majority of the reviewed research does not consider the traffic 
congestion as a factor in determining the charging stations’ locations. Therefore, this paper presents an optimization 
model to optimize the location of EVs charging stations considering waiting and travel time to the charging station as 
decision variables. In addition, solution procedures are developed to solve the pro-posed optimization model. 
             
3. Methodology 

This section is divided into three parts. The first part is about the mathematical formulation of the optimization 
model, whereas the second part is about the simulation and the third part is about the solution procedure for the 
optimization model.  
 
3.1. Problem Formulation    

An optimization model is formulated in this section to satisfy the objective of this research, which is to optimize 
the location of EVs’ charging stations. The problem formulation considers the following case: 

In a city that has m possible locations for charging stations, it is required to select n (n ≤ m) stations to be constructed 
to minimize the objective function: 

Min 𝑧𝑧 = ∑ 𝑐𝑐𝑠𝑠𝑠𝑠 +  ∑ �∑ 𝑇𝑇(𝑣𝑣ℎ,𝑠𝑠)
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 +𝑣𝑣ℎ ∑ 𝑇𝑇(𝑣𝑣ℎ,𝑠𝑠)

𝑤𝑤𝑡𝑡𝑤𝑤𝑣𝑣𝑡𝑡𝑡𝑡
𝑣𝑣ℎ �𝑠𝑠 ∗ 𝑉𝑉𝑇𝑇   (1) 

The objective is to select the location of (n) charging stations that minimize the objective function. The objective 
function includes two different costs. One cost is for the charging station (cs). This is the sum of three costs: 
infrastructure, distribution, and operation cost of the charging station. The other cost is the value of time (VT). This 
objective function is subject to several constraints. Some of these constraints are related to the battery consumption 
calculation [31]. Variability and uncertainty of EVs battery consumption will not be considered since the research will 
use the same battery consumption profile or function for all the EVs. The developed optimization model constraints are 
the following: 

 𝑇𝑇(𝑣𝑣ℎ,𝑠𝑠)
𝑤𝑤𝑡𝑡𝑤𝑤𝑣𝑣𝑡𝑡𝑡𝑡 =  

𝐷𝐷(𝑣𝑣ℎ,𝑠𝑠)
𝑚𝑚𝑤𝑤𝑡𝑡𝑡𝑡

𝑣𝑣𝑚𝑚𝑤𝑤𝑡𝑡𝑡𝑡/ℎ(𝑞𝑞)
𝐴𝐴𝐴𝐴𝐴𝐴  (2) 

 
𝑇𝑇(𝑣𝑣ℎ,𝑠𝑠)
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

= � 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒 𝑟𝑟𝑒𝑒𝑡𝑡𝑟𝑟𝑡𝑡𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑟𝑟 𝑟𝑟 𝑐𝑐ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟 𝑝𝑝𝑡𝑡𝑝𝑝𝑒𝑒 𝑡𝑡𝑓𝑓 𝑏𝑏𝑒𝑒 𝑟𝑟𝑣𝑣𝑡𝑡𝑝𝑝𝑟𝑟𝑏𝑏𝑝𝑝𝑒𝑒          𝑁𝑁𝑉𝑉𝑁𝑁 ≥ 𝑃𝑃𝑁𝑁
0                                                                                                                      𝑓𝑓𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑡𝑡𝑁𝑁𝑒𝑒

 
(3) 

 𝐸𝐸𝑤𝑤𝑡𝑡𝑤𝑤𝑤𝑤𝑡𝑡(𝑣𝑣ℎ,𝑤𝑤)
𝐶𝐶𝑡𝑡𝑤𝑤𝑠𝑠 = 𝐸𝐸1(𝑣𝑣ℎ,𝑤𝑤)

𝐶𝐶𝑡𝑡𝑤𝑤𝑠𝑠 + 𝐸𝐸2(𝑣𝑣ℎ,𝑤𝑤)
𝐶𝐶𝑡𝑡𝑤𝑤𝑠𝑠    ∀𝑣𝑣ℎ, 𝑡𝑡 (4) 

 
𝑏𝑏𝑡𝑡(𝑣𝑣ℎ,𝑤𝑤) = � 

𝑏𝑏𝑡𝑡(𝑣𝑣ℎ,𝑤𝑤) − 𝐸𝐸𝑤𝑤𝑡𝑡𝑤𝑤𝑤𝑤𝑡𝑡(𝑣𝑣,𝑤𝑤)
𝐶𝐶𝑡𝑡𝑤𝑤𝑠𝑠   ∀𝐸𝐸𝑤𝑤𝑡𝑡𝑤𝑤𝑤𝑤𝑡𝑡(𝑣𝑣ℎ,𝑤𝑤)

𝐶𝐶𝑡𝑡𝑤𝑤𝑠𝑠 < 𝑏𝑏𝑡𝑡(𝑣𝑣ℎ,𝑤𝑤)

𝑏𝑏𝑡𝑡𝑚𝑚𝑤𝑤𝑤𝑤(𝑣𝑣ℎ,𝑤𝑤)                   ∀𝐸𝐸𝑤𝑤𝑡𝑡𝑤𝑤𝑤𝑤𝑡𝑡(𝑣𝑣ℎ,𝑤𝑤)
𝐶𝐶𝑡𝑡𝑤𝑤𝑠𝑠 ≥ 𝑏𝑏𝑡𝑡(𝑣𝑣ℎ,𝑤𝑤)

   ∀𝑣𝑣ℎ, 𝑡𝑡 

 

(5) 

 

 t𝑤𝑤𝑡𝑡𝑤𝑤𝑡𝑡(𝑣𝑣ℎ,𝑠𝑠) = �
𝑇𝑇(𝑣𝑣ℎ,𝑠𝑠)
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤, 𝑇𝑇(𝑣𝑣ℎ,𝑠𝑠)

𝑤𝑤𝑡𝑡𝑤𝑤𝑣𝑣𝑡𝑡𝑡𝑡 = 0

𝑇𝑇(𝑣𝑣ℎ,𝑠𝑠)
𝑤𝑤𝑡𝑡𝑤𝑤𝑣𝑣𝑡𝑡𝑡𝑡 + 𝑇𝑇(𝑣𝑣ℎ,𝑠𝑠)

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤, 𝑇𝑇(𝑣𝑣ℎ,𝑠𝑠)
𝑤𝑤𝑡𝑡𝑤𝑤𝑣𝑣𝑡𝑡𝑡𝑡 > 0

 (6) 

 t𝑤𝑤𝑡𝑡𝑤𝑤𝑡𝑡(𝑣𝑣ℎ,𝑠𝑠) ≤  t𝑤𝑤𝑡𝑡𝑤𝑤𝑡𝑡 𝑀𝑀𝐴𝐴𝑀𝑀(𝑣𝑣ℎ,𝑠𝑠) (7) 
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 𝐸𝐸1(𝑣𝑣ℎ,𝑤𝑤)
𝐶𝐶𝑡𝑡𝑤𝑤𝑠𝑠 = �

𝜏𝜏(𝑣𝑣ℎ) × 𝐷𝐷(𝑚𝑚,𝑑𝑑,ℎ,𝑣𝑣ℎ)
𝑚𝑚𝑤𝑤𝑡𝑡𝑡𝑡

𝜂𝜂𝐵𝐵𝐵𝐵 × 𝜂𝜂𝑃𝑃𝑃𝑃 × 𝜂𝜂𝑀𝑀 × 𝜂𝜂𝐴𝐴
  ∀Θ𝑚𝑚𝑤𝑤𝑤𝑤 ≤ Θ(𝑤𝑤) ≤ Θ𝑚𝑚𝑤𝑤𝑚𝑚

    0                                       𝑒𝑒𝑝𝑝𝑁𝑁𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑟𝑟𝑒𝑒                   
   ∀𝑣𝑣ℎ, 𝑡𝑡 (8) 

   

 𝐸𝐸2(𝑣𝑣ℎ,𝑤𝑤)
𝐶𝐶𝑡𝑡𝑤𝑤𝑠𝑠 = �

𝐸𝐸𝐴𝐴𝐶𝐶(𝑣𝑣ℎ,𝑤𝑤)           ∀Θ𝐴𝐴𝐶𝐶 ≤ Θ(𝑤𝑤) ≤ Θ𝑚𝑚𝑤𝑤𝑚𝑚
𝐸𝐸𝐻𝐻𝐵𝐵(𝑣𝑣ℎ,𝑤𝑤)          ∀Θ𝑚𝑚𝑤𝑤𝑤𝑤 ≤ Θ(𝑤𝑤) ≤ Θ𝐻𝐻𝐵𝐵
0                         𝑒𝑒𝑝𝑝𝑁𝑁𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑟𝑟𝑒𝑒                  

   ∀𝑣𝑣ℎ, 𝑡𝑡 (9) 

 

 

𝐸𝐸𝐴𝐴𝐶𝐶(𝑣𝑣ℎ,𝑤𝑤)

= �
𝑃𝑃𝑆𝑆𝐵𝐵𝐴𝐴𝐶𝐶 ×

t𝑤𝑤𝑡𝑡𝑤𝑤𝑡𝑡(𝑣𝑣ℎ,𝑠𝑠)

60
                                                     ∀t𝑤𝑤𝑡𝑡𝑤𝑤𝑡𝑡(𝑣𝑣ℎ,𝑠𝑠) ≤ 10

0.6 × 𝑃𝑃𝑆𝑆𝐵𝐵𝐴𝐴𝐶𝐶 + 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵𝐴𝐴𝐶𝐶 ×
(t𝑤𝑤𝑡𝑡𝑤𝑤𝑡𝑡(𝑣𝑣ℎ,𝑠𝑠) − 10)

60
           ∀t𝑤𝑤𝑡𝑡𝑤𝑤𝑡𝑡(𝑣𝑣ℎ,𝑠𝑠) > 10

   ∀𝑣𝑣ℎ, 𝑡𝑡 
(10) 

 

𝐸𝐸𝐻𝐻𝐵𝐵(𝑣𝑣ℎ,𝑤𝑤)

= �
𝑃𝑃𝑆𝑆𝐵𝐵𝐻𝐻𝐵𝐵 ×

t𝑤𝑤𝑡𝑡𝑤𝑤𝑡𝑡(𝑣𝑣ℎ,𝑠𝑠)

60
                                                     ∀t𝑤𝑤𝑡𝑡𝑤𝑤𝑡𝑡(𝑣𝑣ℎ,𝑠𝑠) ≤ 10

0.6 × 𝑃𝑃𝑆𝑆𝐵𝐵𝐻𝐻𝐵𝐵 + 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵𝐻𝐻𝐵𝐵 ×
(t𝑤𝑤𝑡𝑡𝑤𝑤𝑡𝑡(𝑣𝑣ℎ,𝑠𝑠) − 10)

60
           ∀t𝑤𝑤𝑡𝑡𝑤𝑤𝑡𝑡(𝑣𝑣ℎ,𝑠𝑠) > 10

   ∀𝑣𝑣ℎ, 𝑡𝑡 
(11) 

 �∑ 𝑇𝑇(𝑣𝑣ℎ,𝑠𝑠)
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 +𝑣𝑣ℎ ∑ 𝑇𝑇(𝑣𝑣ℎ,𝑠𝑠)

𝑤𝑤𝑡𝑡𝑤𝑤𝑣𝑣𝑡𝑡𝑡𝑡
𝑣𝑣ℎ �

𝑁𝑁𝑃𝑃𝐴𝐴
≤ ∝ 

 
(12) 

Where: 
𝑐𝑐𝑠𝑠 is the total cost of charging station (s) ($) 
VT is the value of time ($/hour) 
𝑇𝑇(𝑣𝑣ℎ,𝑠𝑠)
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 is the time spent by vehicle (vh) at charging station (s) (this is the waiting time + charging time).   

Nps is the number of chargers at station (s). 
𝑇𝑇(𝑣𝑣ℎ,𝑠𝑠)
𝑤𝑤𝑡𝑡𝑤𝑤𝑣𝑣𝑡𝑡𝑡𝑡 is the travel time of vehicle (vh) to reach station (s).  

𝐷𝐷(𝑣𝑣ℎ,𝑠𝑠)
𝑚𝑚𝑤𝑤𝑡𝑡𝑡𝑡  is the additional distance traveled by vehicle vh to reach station (s). 

𝐸𝐸𝑤𝑤𝑡𝑡𝑤𝑤𝑤𝑤𝑡𝑡(𝑣𝑣ℎ,𝑤𝑤)
𝐶𝐶𝑡𝑡𝑤𝑤𝑠𝑠  is the total energy consumed by vehicle (vh) in kWh. 

𝐸𝐸1(𝑣𝑣ℎ,𝑤𝑤)
𝐶𝐶𝑡𝑡𝑤𝑤𝑠𝑠  denotes the total tractive energy required in kWh to overcome vehicle inertia, road resistance, and 

aerodynamics drag for the trip finished by vehicle (𝑣𝑣ℎ) at the end of time interval t. 
𝐸𝐸2(𝑣𝑣ℎ,𝑤𝑤)
𝐶𝐶𝑡𝑡𝑤𝑤𝑠𝑠  denotes the energy in kWh required to maintain the cabin temperature comfortable for the vehicle 

driver and passengers during the trip finished by vehicle (𝑣𝑣ℎ) at the end of time interval 𝑡𝑡; 
𝑏𝑏𝑡𝑡(𝑣𝑣ℎ,𝑤𝑤) is the stored energy in kWh in vehicle (vh) at time t. 
Θ𝑚𝑚𝑤𝑤𝑚𝑚, Θ𝑚𝑚𝑤𝑤𝑤𝑤 denote the maximum and minimum temperature limits for battery usage in Battery Charge 
Depletion (BCD) mode, respectively. 
Θ𝐴𝐴𝐶𝐶 , Θ𝐻𝐻𝐵𝐵 denote the average thresholds for A/C and HT operation, respectively. 
𝐸𝐸𝐴𝐴𝐶𝐶(𝑣𝑣ℎ,𝑤𝑤), 𝐸𝐸𝐻𝐻𝐵𝐵(𝑣𝑣ℎ,𝑤𝑤) denote the energies in kWh consumed by A/C and HT respectively, during the trip finished 
by vehicle (𝑣𝑣ℎ) at the end of time interval 𝑡𝑡; 
t𝑤𝑤𝑡𝑡𝑤𝑤𝑡𝑡(𝑣𝑣ℎ,𝑠𝑠) denotes the duration in minutes of the trip of vehicle 𝑣𝑣ℎ to reach charging station s. 
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𝑣𝑣𝑚𝑚𝑤𝑤𝑡𝑡𝑡𝑡/ℎ
𝐴𝐴𝐴𝐴𝐴𝐴  denote the average vehicle (vh) speed in mi/h. 

𝑃𝑃𝑆𝑆𝐵𝐵𝐴𝐴𝐶𝐶 , 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵𝐴𝐴𝐶𝐶  denote the powers in kW consumed by A/C during starting and continuous operation, respectively. 
𝑃𝑃𝑆𝑆𝐵𝐵𝐻𝐻𝐵𝐵 , 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵𝐻𝐻𝐵𝐵  denote the powers in kW consumed by heating during starting and continuous operation, 
respectively. 
𝑁𝑁𝑃𝑃𝐴𝐴 is the number of EVs that needed charging. 
∝ is the threshold for the maximum average waiting plus charging time per EV. 
 

As it appears from the formulation, there is a need to evaluate the vehicle’s travel time, which depends on the traffic 
congestion and network characteristics. In order to have accurate estimates of the travel times, traffic simulation will be 
utilized to estimate the travel times based on the prevailing traffic conditions in the network.  

 
3.2. Simulating EVs 

There are different traffic simulation models that can be used for the simulation purpose. According to the literature, 
these simulation models can be microscopic, mesoscopic, and macroscopic [24]. Microscopic simulation models are in-
depth simulation models and consider each vehicle separately in which it includes several properties of vehicles such as 
speed, locations, fuel consumption and others [25]. Whereas macroscopic simulation is based on the evaluation of entire 
system not each vehicle separately in which it includes properties such as the average speed of all vehicles. On the other 
hand, mesoscopic simulation has the features of microscopic and macroscopic. The three traffic simulation models are 
also different in the amount of detail required for modeling purposes and the level of effort needed to model and simulate 
[26]. There are different traffic simulation tools that can be classified as microscopic simulation models such as 
TRANSIMS [27], SUMO [28], MAINSIM [29], Veins [30], MITSIMLab [31], VISSUM [32], Quadstone paramics 
[33], MITSIM [34], ITSUMO [35], Simtraffic[32], SIMWALK [36], and CORSIM [37]. Furthermore, examples of 
traffic simulation tools that can be classified as mesoscopic simulation models are MATsim [38], Dynameq [39], 
INTEGRATION [40], DynaMIT [41], and DYNASMART [42]. In addition, several examples of macroscopic traffic 
simulation tools will include NETFLO1 [43], FREQ 12 [44], Aurora [45], and JaamSim [46]. Each traffic simulation 
tool has advantages and disadvantages, and it can effectively be used in different simulation scenarios. 

After reviewing the literature, a mesoscopic traffic simulation model was chosen to be used. The reason for using 
this simulation model is that it gathers the features of microscopic and macroscopic simulation models. It applies the 
microscopic features in intersection and macroscopic features on the links. DYNASMART traffic simulation tool will 
be used in this research due to its capabilities and functionalities. DYNASMART can show how the traffic flow will be 
in the network at different times and places and capable of providing a suitable route guidance to each user. These two 
capabilities are essential elements to dynamically assign traffic to a network, which is called descriptive and normative 
[47]. Another reason to use DYNASMART is that its source code is available to the research team, which will allow for 
modification.  

In this research, DYNASMART will be used to simulate different traffic scenarios to the road network of the UAE. 
These scenarios include several penetration rates of EVs to the traffic stream such as 20, 40, 60, 80, and 100 percent. In 
addition, the travel demand will have three levels representing mild congestion, congested network and very congested 
network. The summary and detailed flowcharts for DYNASMART are provided in previous publication [42]. The 
simulation process within DYNASMART will be modified to take into consideration the EVs and the charging stations’ 
locations and operation. 

 
3.3. Proposed Solution Procedure 

After formulating the optimization problem, the goal of this paper is to provide a procedure to decide on the optimal 
locations of electric vehicle charging stations, considering the prevailing traffic conditions. Similar to the previous 
research, all related optimization models cannot be solved using an exact algorithm since it is an NP-hard problem; so, 
a heuristic algorithm is used in the solution procedure.  

The goal of the procedure is to select the least number of charging stations (n) from a large number (m). These (m) 
possible locations are determined based on the electrical network grid in the considered study area. The selection of the 
stations is an iterative procedure. At the initial iteration, all possible locations are considered as charging stations. The 
study area network is simulated, and two values for waiting times are obtained, the total waiting time (tot_w_st), at the 
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charging stations, and the average waiting time (w_avg), at the charging stations, for all EVs in the network. The process 
continues by ranking all the stations based on the total waiting time at each station (tot_w_st), removing all stations with 
zero (tot_w_st) and one station with the lowest (tot_w_st) based on the ranking, then simulating the traffic network with the 
new number of charging stations. The optimization process stops when the average waiting time exceeds a threshold value 
(∝). Otherwise, until the condition is reached, the process will continue by removing one station at each step based on the 
ranking. The described solution procedure is illustrated in Fig. 1. 

 
Fig. 1: The optimization procedures. 

 
4. Conclusions 

The planet is facing a problem of a significant increase in the amount of harmful gases produced by vehicles due to the 
increase in the number of vehicles. Therefore, alternatives to conventional vehicles need to be considered. EVs are one of 
these alternatives that need to be taken into consideration due to their advantages in reducing the amount of harmful gases 
released. As previously mentioned, governments started promoting EVs and plan for this new type of vehicles. Since EVs 
need to be recharged, one of the important planning tasks is to build charging stations. In the literature, most of the research 
optimization models are concentrating on different costs and grid systems. However, no research considers waiting time at 
the charging station as a decision variable in the optimization objective function. In this research, DYNASMART will be 
used to simulate EVs within the traffic stream and an optimization model was developed to optimize the location of EVs 
charging stations considering waiting and travel time to the charging station as decision variables. The developed 
optimization model is a complex problem that cannot be solved for the exact solution. However, this research developed 
solution procedures which are used to find the optimal solution.  The proposed optimization model and the solution procedure 
developed might be modified or improved during the actual application if needed. 
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