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Abstract – Maintaining the integrity of transportation infrastructure is critical for resilience and safety. Subsurface changes, along with 
climate change and aging infrastructure, can all contribute to the development of sinkholes, a critical concern for infrastructure. However, 
early detection is possible through characterization of the factors that influence sinkhole formation. Ground-penetrating radar (GPR) is a 
practical tool for non-destructive subsurface monitoring and early detection of sinkholes. Nevertheless, conventional GPR evaluation 
relies heavily on subjective analysis. Deep learning (DL) techniques can automate and improve GPR data analysis, especially for large 
amounts of collected data. Despite the success of DL in the field of computer vision, limited data availability prevents its widespread 
application in GPR surveys. In this paper, an overview of GPR applications for cavity detection in transportation infrastructure is 
discussed, highlighting key findings and limitations. It also explores data preparation techniques, including synthetic data generation and 
data augmentation, to facilitate the automation of cavity detection from GPR data using DL approaches. 
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1 Introduction 

A key factor in assuring the resilience and safety of transportation infrastructure is the integrity of the ground they are 
built upon. Any weaknesses or deficiencies in the ground (e.g. inadequate drainage or fluctuating water table) can lead to 
serious structural problems, such as sinkholes, pavement failures, and bridge collapses, which pose significant risks to public 
safety and the environment. Indeed, the incidence of sinkhole collapses affecting transportation infrastructure has been on 
the rise in recent years, primarily due to the impact of climate change on foundations soils. The increasing frequency and 
intensity of extreme weather events, such as drought and heavy rainfall, are accelerating pavement deterioration and 
exacerbating soil instability [1]. These superficial distresses (cracking and rutting) create pathways for water ingress, leading 
to the washing away of soil materials. Moreover, the alternating cycles of wetting and drying can have detrimental effects 
on certain types of soils. In clay soils, these cycles induce swelling and shrinkage, causing soil movement and instability. 
Similarly, freezing and thawing cycles can weaken sandy silts, making them more prone to erosion and structural failure.  

Sinkhole formation could be detectable from the surface due to ground depressions, but in many cases the pavement 
may appear intact despite underlying structural weaknesses. The structural integrity of pavement is crucial for supporting 
traffic loads safely. Within this framework, geophysical subsurface monitoring plays a crucial role in assessing the real 
condition of the subground and detecting early signs of sinkhole formation that may not be visible through conventional 
visual inspection methods. Among these geophysical methods, ground-penetrating radar (GPR) stands out as a valuable tool 
due to its non-destructive and non-invasive nature. In the context of transportation infrastructure, GPR is widely used for 
evaluating both flexible and rigid pavements, as well as the underlying subgrade [2, 3]. GPR provides valuable insights into 
the subsurface conditions for predicting sinkhole formation [4], such as cavities, settlements, and moisture damage. However, 
its effectiveness relies heavily on the signal processing methods employed and the expertise of who interprets. Additional 
development is therefore much needed to implement feasible processing and interpretational techniques that minimize 
subjectivity and maximize the quality and accuracy of the results obtained [5]. Recently, deep learning (DL) techniques and 
their application in signal processing and object detection became state-of-the-art (SoA), due to their remarkable detection 
speed and accuracy compared to conventional image processing techniques. DL applications have the potential to 
significantly reduce analysis subjectivity by automatically detecting hidden patterns in complex data. While DL algorithms 
have been widely adopted in computer vision tasks such as image classification and segmentation, their application to GPR 
data analysis is relatively new and still underexplored. The main reason is the limited availability of labeled data for training 
purposes. Furthermore, when dealing with cavity detection, the complexity arises from the great variety of features (or 
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signatures) representing a sinkhole or cavity. This diversity necessitates a larger number of annotated images for 
effective model training. To overcome this limitation, synthetic data (numerical modelling) and data augmentation 
methods are used for the creation of diverse and realistic datasets, providing valuable training samples and improving 
model generalization [6].  

Following the above motivation and current SoA, this work presents (i) a review of the application of the GPR 
method to detect cavities in linear infrastructure, highlighting its main findings and limitations, and (ii) a discussion on 
the data preparation techniques used to automate cavity detection from GPR data. Future perspectives on the application 
are also commented. 
 
2 GPR applied to road cavity detection 

The GPR method has shown remarkable capabilities in detecting cavities in road infrastructure, along with other 
aspects related sinkhole formation. Table 1 describes some notable contributions found in the published literature:  

 
Table 1: Examples of published works related to GPR cavity detection. 

Objective Antenna 
frequency Findings Limitations Reference 

To investigate a 
sinkhole in an 
urban area 

 

180 MHz 

GPR identified a concealed 
sinkhole probably caused by 
sagging 

 

GPR was affected by the presence of highly 
conductive anthropogenic deposits and 
landscaped areas. Complementary NDT (INSAR, 
LiDAR, ERT) was used to overcome this 
limitation 

[7] 

To detect sinkholes 
in urban areas 400 MHz 

GPR detected surface 
breaks, sinkholes, and down-
dipping layers (sinking) due 
to forming sinkholes 

The penetration depth of GPR was limited. 
Another limitation is to assess urban areas with 
presence of targets (e.g. buildings). 
Complementary NDT was used: InSAR and 
reflection seismic 

[8] 

To detect road 
deterioration and 
possible causes 

500 & 800 
MHz 

A sinkhole was identified at 
2 m deep, without 
superficial signs 

Data interpretation improved when using higher 
antenna frequencies. Complementary NDT used: 
IRT, RGB, TLS 

[9] 

To detect cavities 
and galleries 

400 & 200 
MHz 

GPR detected cavities and 
galleries at depths up to 3 m 

The penetration depth of GPR was limited. 
Complementary NDT used: ERT [10] 

To identify forming 
sinkholes and 
karstic features 

600 & 200 
MHz 

GPR detected subsidence, 
fractured rock and cavities 

Complementary NDT used: refraction Seismic 
(and geological aspects) to assess potential 
sinkhole geohazards 

[11] 

To detect a sinkhole 
into karst-related 
systems 

100 MHz 

GPR detected reflectivity 
anomalies associated with 
karst features (e.g., 
weathering, fracturation) 
with reliable results up to 
10-m depth 

Not accurate enough to reveal the karstic 
depression due to the thickness of soils infilling, 
depth of bedrock, and presence of potential 
geological factors that could attenuated the signal 
and limited the resolution. Complementary NDT 
used: refraction seismic and ERT 

[12] 

To monitor a high-
risk sinkhole in an 
urban area 

100 & 200 
MHz 

GPR provided information 
on the internal structure of 
the sinkhole and the 
subsidence mechanisms 

 

Signal noise produced by artificial elements (e.g., 
walls of the buildings' basement, pipes, cables). 
The GPR profiles acquired perpendicularly to the 
deformation structures offer more information on 
the subsidence structures than those with 
significant obliquity. The dip of the reflections is 
affected by the topographic correction. 
Complementary data: high-precision levelling  

[13] 

To characterize 
karst aquifer 100 MHz 

GPR detected potential 
targets with elongated shape 
typical for karstic channels 

Strong influence of anthropic structures (e.g., 
pipes) that could lead to misinterpretation (not 
karstic voids). Complementary NDT used to give 

[14] 
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systems under 
urban areas  

confidence in interpretation: ERT, reflection 
seismic and InSAR 

 
As observed in Table 1, integrating GPR with complementary geophysical methods is a common approach to overcome 

overcome technical limitations and misinterpretation. Combining multiple techniques, such as electrical resistivity 
tomography (ERT), seismic and InSAR provides more reliable information at different scales and resolutions. 

Sinkholes and subsidence mechanisms are complex structures that generate complex and random reflections patterns, 
making difficult the GPR data interpretation. Figure 1 presents some reflections patterns produced by cavities or sinkholes 
mechanisms, showing the variety of GPR signatures associated to these kinds of features. In this context, the use of more 
sophisticated tools, such as artificial intelligence (AI), is highly valued to assist in the interpretation process of GPR data. AI 
methods, including DL models, can analyse large volumes of data and automatically extract characteristic patterns of 
sinkhole formation and subsurface features indicative of subsidence. 

 
Fig. 1: Examples of GPR signatures for cavities and sinkholes mechanisms: 500 MHz data (a and b) and 900 MHz data (c and d). 
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3 Data augmentation methods for automated cavity detection 
The pattern of the cavities can be complex, with many signal variations depending on their size, shape, the filling 

material and the surrounding soil. In addition, the pattern can be accompanied by other clutter and artifacts with stronger 
reflections, making it a non-dominant feature in the profile and, hence, difficult to interpret. Traditional GPR analysis 
often involves manual interpretation, which can be subjective and time-consuming, making it impractical for preparing 
large datasets with ground truth. 

In the past few years, deep learning models, particularly Convolutional Neural Networks (CNNs), have received 
more attention in the research field [15]. Those models can automate the detection process thanks to their capabilities 
for automatic feature extraction and handling large GPR datasets. Therefore, they offer a faster and more consistent 
solution. However, the training process requires a large amount of labelled data, which is a challenging task. Recently, 
more research has focused on using supplementary synthetic data from numerical simulations to increase the size of the 
dataset. Still, generating realistic cavity samples is computationally intensive, and one model generates one sample. 
Another approach is to use generative adversarial networks (GANs) for data augmentation, which can increase the 
amount of data used for training [16]. Table 2 lists examples of related deep learning-based methods that used different 
approaches to synthetic data generation and data augmentation. While the collected real data can be limited in size, data 
simulation and augmentation can increase the overall size of the training dataset to be able to train a robust model. It's 
important to note that deep learning models often require thousands of images to train properly, making these data 
augmentation techniques particularly valuable. 

 
Table 2: Examples of published works related to GPR cavity detection using deep learning with synthetic data incorporation. 
 

Objective Antenna 
Frequency 

Collected field data Synthetic data 
approach 

Training data from 
augmentation and 

simulation 
Reference 

To detect cavities and 
cracks from B-scan data 

200 MHz 
400 MHz 
900 MHz 

Cavity samples: 408 
Crack samples: 397 
Total Images: 763 

Gain compensation, 
station spacing, and 
radar signal mapping 

Up to 4376 images 
[17] 

To detect voids from B-
scan data N/A 

20 images SinGAN 
gprMax 

400 using SinGAN 
100 images using 
gprMax 

[18] 

Recognition of pavement 
distress from A-scan data 

500 MHz 
900 MHz 
1.6 GHz 

 
500 traces gprMax 

281 traces using 900 
MHz antenna and 
600 traces using 1.6 
GHz antenna 

[19] 

To detect subsurface voids 
using 3D data 

Multi-channel 
radar system 

Void samples: 88 gprMax 35 void samples [20] 

 
3.1 GPR data simulations 

GPR simulations are the most common method to generate GPR data as they can generate realistic GPR scenarios 
based on a specific antenna frequency and with high details. Moreover, pavement layer compositions and soil properties 
can be controlled. Also, the shape, size, depth, and material of the cavity and surrounding loose soil can be adapted 
based on the purpose of the simulation. Simulations are also giving the ability to generate 3D data by simulating parallel 
profiles [21]. For deep learning purposes, the simulation output can be interpreted and annotated easily as the ground 
truth is known. Moreover, it can be used for training or testing purposes as they are not driven from the existing data. 
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Figure 2 shows an example for a simulation using the gprMax package [22]. Several cavities with irregular shapes have been 
positioned at different depths, and the synthetic data was generated by considering an antenna frequency of 1 GHz.  

The simulation process can be computationally demanding and, usually, one model results in only one image during 
dataset generation. To add more variety to the generated data, a simple image fusion can be used to add a background from 
from clutter-free data to the simulation to augment more samples. Figure 3 shows an example of the image fusion between 
between simulated 400 MHz cavity with a background of real data.  This approach can be further expanded to copy and paste 
cavities over different real data backgrounds. 

 
Fig. 2: Examples of GPR simulation for shallow cavities using 1 GHz antenna: The model (left) and the corresponding simulation 

(right). 

 
Fig. 3: Example for a basic image fusion to add clutter for a simulated data: A) simulated cavity using a 400 MHz antenna; B) real GPR 

data sample, and C) overlay between both images. 

 
 

3.2 Traditional data augmentation 
A common approach for data augmentation is to apply transformations to the existing real-world dataset, which can help 

the model generalize better to unseen situations. Operations such as translation and rotation are applied to the B-scan images 
to shift the objects' position and have more diversity in the cavity examples. Other operations can be image flipping, noise 
injection, and brightness and contrast adjustments, which can be similar to applying different gain functions. The augmented 
data can be further checked with image similarity methods such as Simple Linear Iterative Clustering Phash (SLIC-Phash) 
[23] to eliminate the similar or repeated augmented images which will improve the quality of the final training dataset. The 
selection of the data augmentation method depends on the problem under investigation and the target object of interest. 
3.3 Generative adversarial networks 

Generative adversarial networks (GANs) are a recent deep learning approach used for data augmentation. The basic 
concept involves training two neural networks in competition: a generator that attempts to create realistic data and a 
discriminator that tries to distinguish between real and generated data. While approaches like CycleGAN can be effective 
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for generating GPR data [24], they often require large, diverse datasets to achieve optimal results. Training GANs can be 
problematic with cavities data as they are limited and difficult to obtain. Single-image techniques like SinGAN may be more 
suitable for cavity data augmentation as they require only a single image to train the model. Figure 4 shows an example of 
cavity data generated using SinGAN [25]. While it generates new data, the output often strongly resembles the original 
image. In addition, the input image should be chosen carefully to ensure that the cavity pattern is clear and is the dominant 
feature in the image. Another approach, ExSinGAN [26], allows control over semantics, structure, and texture within the 
input data, enabling customization of the generated output. Figure 5 demonstrates data generated by this method, illustrating 
the impact of changing different parameters. While GAN training can be resource-intensive, it can generate theoretically 
unlimited data, unlike the traditional simulation methods, which generate only one output. However, the output of the GAN 
models needs to be interpreted as there is no corresponding ground truth. 

 
Fig. 4: Examples of GPR data augmentation using SinGAN: Input image (left) and the corresponding generated data (right). 

 
 

Fig. 5: Examples of GPR data augmentation using ExSinGAN: Input image (left) and the corresponding generated data using texture 
and structure components only (right). 

 
 
4 Conclusion and further challenges 

The GPR method has proven to be highly effective in detecting cavities in road infrastructure and assessing 
various aspects related to sinkhole formation. To overcome its inherent limitations, GPR is often complemented with 
other geophysical methods such as ERT and InSAR to obtain a more comprehensive understanding of subsurface 
conditions and improve the accuracy in detection.  However, conducting geophysical prospection often requires careful 
planning, data acquisition, processing, and interpretation, which can take considerable time and resources.  

Deep learning methods can automate cavity detection on a network level during regular inspection surveys, but 
the need for large training datasets remains a challenge. This paper briefly reviewed data augmentation and synthetic 
generation methods, highlighting their potential. A balanced approach that combines GPR data simulation and 
augmentation can provide diverse and realistic datasets needed for resource-efficient tasks. Our preliminary results will 
contribute to building a cavity database for training a robust object detection model, such as YOLOv9, which is 
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currently considered SoA for object detection. The preliminary experiments suggested that having a training dataset between 
3000 to 4000 images using the discussed methods is a good starting point to train SoA cavity detection model. 

To sum up, intelligent monitoring plays a crucial role in ensuring the safety and longevity of transportation 
infrastructure. The early detection of any changes or deterioration in the ground leads to prevent potential hazards. By 
prioritizing the integrity of the ground, transportation authorities can enhance the resilience and longevity of infrastructure, 
ultimately ensuring the safety and well-being of the traveling public. Moreover, implementing proactive maintenance 
strategies allows them to optimize investments and resource allocation effectively, thus prolonging the lifespan of 
transportation assets.  
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