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Abstract - Wind action is crucial in the design of slender and flexible structures, as both height and wind load can induce worrisome 
dynamic responses in such constructions. The Paraguayan Standard NP 196 addresses wind action and recognizes its effects on rigid 
structures but lacks an analysis that includes dynamic effects for buildings susceptible to this wind action. International regulations such 
as the Euro Code 1: “Actions on Structures” incorporate the dynamic effect of wind through a Gust Response Factor, analyzing the 
theoretical spectrum of the fluctuating wind component. The objective of this study was to apply two parallel spectral analysis methods, 
Davenport and Galindez, to analyze a representative slender structure and evaluate the susceptibility of the gust response factor. This 
assessment was conducted based on the methodological variables proposed in the literature. The research indicates that the difference 
between both methods lies in the cross-correlation coefficient and the application of the equivalent static force in wind load calculations, 
with Davenport's method being suggested for its simplicity, or alternatively, Galindez's method which yields more conservative estimates 
of the equivalent static force.  
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1. Introduction 

The rapid urbanization and advancements in engineering have fueled a high demand for commercial and residential 
spaces, leading to the vertical expansion of structures. While these innovations offer numerous benefits, they also present 
significant challenges arising from increased structural flexibility, slenderness, lack of sufficient damping, and low natural 
frequencies [1]. The influence of dynamic wind action on slender and/or flexible structures is of paramount importance, and 
its comprehensive analysis is essential to ensure the safety, integrity, and service life of buildings [2]. The Paraguayan 
standard NP 196: “Wind Action on Constructions” [3] considers wind speed as the sum of a mean velocity component and 
a fluctuating velocity component, commonly referred to as a gust. These gusts can induce significant deflections in flexible 
and slender structures. However, the standard mentioned lacks a design methodology for calculating the dynamic effects of 
wind loads on slender and flexible buildings, which are highly susceptible to these effects. 

Mathematically, it is typical to model wind as consisting of two components, with respect to its velocity: a constant 
component and a fluctuating irregular component. The constant velocity component gradually increases with height, while 
the fluctuating component exhibits a random variation that cannot be treated deterministically. Instead, the analysis of the 
fluctuating component requires the use of probability theory and statistical averages. The need to express the properties of 
turbulence in statistical terms was first recognized by G. I. Taylor [4], through a seminal paper discussing diffusion in the 
atmosphere. Taylor's theory was subsequently expanded upon by himself in 1935 [5] and further developed by Von Karman 
and Tsien in 1938 [6]. The spectrum of a turbulent velocity component is defined by the resulting energy distribution as a 
function of frequency. This energy is equivalent to the variance; therefore, the total variance due to fluctuations across various 
frequencies directly defines the spectrum [7]. 

The statistical approaches that enable the prediction of a structure's response to wind are schematically illustrated in Fig. 
1. Relationships exist between velocity, force, and gust response, both in the time domain and the frequency domain. Having 
the velocity spectrum as input data, the force and response spectra of the studied structure can be obtained through the 
implementation of aerodynamic admittance and mechanical admittance functions, respectively [7]. While this theory applies 
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to systems related to a single degree of freedom, it has been extended to various complex structures with multiple degrees 
of freedom, susceptible to being excited in various modes of vibration [8], [9]. 

 

 
Fig. 1: Statistical approach to determining the response of a structure to wind action [10].  

 
The gust response factor, G, proposed by Davenport [11] can be described as the ratio of the expected maximum 

response of a structure over a defined time period (e.g. 10 minutes) to the average response, within that same defined 
time period. This approach has led to the estimation of equivalent static wind load by the multiplication of mean wind 
with the gust response factor mentioned previously, and has been adopted as a standard method in many design codes 
and standards worldwide such as [12], [13]. 

The research aims to analyze the suitability of two parallel methodologies found in the literature for assessing the 
dynamic effect of wind on slender and flexible structures. The two methodologies studied were proposed by Davenport 
and Galindez, respectively. The primary objective was to identify the main cause of the discrepancy in the gust response 
factor between these two methods. Both methods are fundamentally based on the spectral analysis of wind, employing 
procedures to calculate the dynamic amplification factor of the corresponding structure. 

 
2. Methodology 

In order to compare Davenport and Galindez methods, a representative high-rise building was selected. 
Subsequently, the calculation of the dynamic wind effect acting on the structure considered was carried out by applying 
the two parallel spectral analysis methodologies. Finally, a comparison of the values obtained through both approaches 
was conducted, contrasting their influences, with the aim of obtaining equations that adequately represent the 
phenomenon being investigated. 

 
2.1. Description of the structure and the environment 

In this study, a representative residential structure from Cachuço's [14] research was selected for analysis, as shown 
in Fig. 2. The building is characterized by a reinforced concrete framework comprising slabs, pillars, beams, and 
substantial screens. Standing at an elevation of 81 meters, it boasts a floor plan measuring 25 meters in the x-axis and 
12 meters along the y-axis. With 27 floors above ground, each floor is 3 meters high, resulting in a total typical floor 
area of 319.4 m2. The total mass of the building, estimated at 7290 tons, is evenly distributed at 270 tons per floor. This 
choice was made due to the building's dynamic characteristics and its representation of common features found in high-
rise reinforced concrete structures throughout the Paraguayan capital. 
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Fig. 2: 3D view of the analyzed building [14]. 

 
For the study, the location of the analyzed structure was considered according to Category II: “Open or approximately 

level terrain, with few isolated obstacles such as trees and low-rise construction”, as established in NBR 6123 [15]. Terrain 
roughness coefficients were determined by the Category II previously stated. A discrete model of the structure was 
considered using precise floor location information of the building, as illustrated in Fig. 3. This resulted in the subdivision 
of the structure into discretized points, with 27 separate nodes spaced at 3-meter intervals. Each node was assigned a point 
mass of 270 000 kg. 

 

 
Fig. 3: Discretized model of the structure [16]. 
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The natural frequency of the building was determined to be 0.339 Hz, pointed out on Fig. 4. Vibration modes were 

analyzed using SAP2000 software, revealing modes of translation along the y-axis at 0.339 Hz and the x-axis at 0.341 
Although these frequencies are closely aligned, the primary natural frequency indicates a lesser rigidity along the y-axis. 
thorough analysis of the building, categorized as a framed structure with reinforced concrete screens designed to absorb 
horizontal forces, unveiled a critical damping ratio 𝜁𝜁 equal to 0.015. 

 

 
Fig. 4: Vibration mode of the building [16]. 

 
2.2. Reference heights for spectral analysis 

Davenport [11] defines ‘G’ as one value associated with a specific building. However, various authors argue that 
this value depends on the elevation considered, indicating it is not constant as established by Davenport. Simplification 
for calculation codes, such as the American standard ASCE/SEI 7-22: “Minimum Design Loads and Associated Criteria 
for Buildings and Other Structures” [13], and “Guidelines for Electrical Transmission Line Structural Loading” [17], 
adopts a single ‘G’ value for each structure. In this regard, several authors proposed adopting a reference height at the 
wind pressure center. Solari [18] recommended using 2/3H, where H is the total height of the analyzed building. 
Davenport [11] used the total height H of the building, while Franco [19] considered 0.9H in his research, stating it as 
the most unfavorable height. This study investigated the impact of the reference height on the gust response factor ‘G’. 
To assess this influence, reference heights of h1 = 0.5H; h2 = 2/3H; h3 = 0.9H; and h4 = H were adopted for the dynamic 
analysis of the analyzed building. 

 
3. Results 
3.1. Gust Response Factor 

Gust response factors ‘G’ have been determined by the general statistical method and simplified method, both by 
Davenport, and the Galindez method, which is the one adopted in the Brazilian standard NBR 6123 [15].  

The gust response factor values are shown using the general statistical method for a basic wind speed equal to 30 
m/s, according to the functions of power spectral density of Davenport [20], Harris [21], Kaimal [22], and Von Karman 
[23], and its behavior according to the reference heights by Fig. 5. 
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Fig. 5: Gust Response Factor (Davenport General Statistical Method) variation according to reference heights for spectral analysis, for 

basic wind speed equal to 30 m/s. 
 
The gust response factor values are shown using the simplified method for a basic wind speed equal to 30 m/s, according 

to the functions of power spectral density of Davenport [20], Harris [21], Kaimal [22], and Von Karman [23], and its behavior 
according to the reference heights by Fig. 6. 

 

 
Fig. 6: Gust Response Factor (Davenport Simplified Method) variation according to reference heights for spectral analysis, for basic 

wind speed equal to 30 m/s. 
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The gust response factor values are shown using the Galindez method for a basic wind speed equal to 30 m/s, 
according to the functions of power spectral density of Davenport [20], Harris [21], Kaimal [22], and Von Karman [23], 
and its behavior according to the reference heights by Fig. 7. 

 

 
Fig. 7: Gust Response Factor (Galindez Method) variation according to reference heights for spectral analysis, for basic wind speed 

equal to 30 m/s. 
 

3.2. Comparison Criteria 
 Each gust response factor ‘G’ was analyzed for both Davenport and Galindez’s methods, taking note of basic wind 
speeds ranging from 10 m/s up to 50 m/s and reference heights h1, h2, h3 and h4, stated previously. A comparative analysis 
was conducted across all cases, examining the maximum variability between the minimum and maximum values of the gust 
response factor under consideration. Additionally, the functions for the power spectral density were evaluated for their 
influence into the gust response factor. 

 
4. Conclusion 

This research examined the behavior of the gust response factor ‘G’ for two parallel spectral analysis methods, 
Davenport's general statistical method and Galindez's method. These methods were applied for the assessment of a 
slender flexible building structure with a natural frequency of 0.339 Hz, susceptible to dynamic wind action. 
Additionally, a simplified version of Davenport's method was evaluated. A maximum difference of 6.4% was found 
between Davenport's general method and Galindez's method, and a 9.2% difference between Galindez's method and 
Davenport's simplified method. Also, there was a difference of 3% between Davenport’s general and simplified method. 

The sensitivity of the reference height used for calculating the gust response factor ‘G’ was also assessed, with a 
maximum variation of 4.5% observed between each case. Based on the results of this work, the application of a reference 
height equal to 2/3 of the total height of the structure is recommended, as this approach is endorsed by many widely 
accepted design codes and standards.  

Additionally, it is worth noting that, while Davenport’s function for the power spectral density is identified with the 
highest resonant peak, approximately at the natural frequency of the structure, it was the first spectrum proposed in the 
literature and is not commonly used in various standards. Therefore, the recommended function was Von Karman’s, due 
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to its second highest prominent resonant peak, particularly when compared to other methods such as Davenport, Harris, and 
Kaimal, bringing the second highest values of the gust response factor ‘G’.  

The key difference between the spectral analysis methods studied, Davenport's and Galindez's, lies in the cross-
correlation coefficient and the application of the equivalent static force in wind load calculations. It can be concluded that 
that both methodologies provide reliable and similar values, affirming that there is not much sensitivity and influence of the 
of the method used in the equivalent static force. Additionally, Davenport's method is convenient for its simplicity, but 
alternatively, Galindez's method could be applied when conservative values of the equivalent static force are of interest. 
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