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Abstract - Seismic resilience assessment of critical infrastructures is paramount for enhancing emergency mitigation planning and 
ensuring robust system performance in seismic hazard scenarios. This study focuses on evaluating the seismic resilience of highway 
bridges, crucial components of transportation networks whose proper functioning post-hazard events is essential for overall network 
integrity. While machine learning (ML) approaches have gained traction in earthquake engineering, their application to bridge resilience 
quantification remains underexplored. Improved ML algorithms, such as artificial neural networks (ANN), offer an alternative to labor-
intensive computational analyses while enhancing model accuracy. This study introduces a novel Bayesian approach to quantify ANN-
based bridge resilience. Applied to a typical class of highway bridges in California, the proposed methodology demonstrates its efficacy 
in estimating seismic resilience metrics. The findings indicate that the Bayesian network performs comparably to conventional neural 
network approaches, underscoring its potential significance in efficiently estimating network resilience and informing infrastructure 
resilience-based assessments and rapid decision-making processes. This research contributes to advancing computational frameworks for 
resilience estimation and offers valuable insights for enhancing infrastructure resilience and emergency preparedness efforts. 
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1. Introduction 

Seismic events pose significant risks to critical infrastructures, making the assessment of seismic resilience crucial for 
effective emergency mitigation planning and ensuring robust system performance in seismic hazard scenarios [1]. Among 
these infrastructures, highway bridges stand out as crucial components of transportation networks, the proper functioning of 
which is essential for overall network integrity and societal resilience. However, traditional methods for assessing seismic 
resilience often entail labor-intensive computational analyses and may not fully capture the complex dynamics of bridge 
performance under seismic loading [2,3].  

In recent years, machine learning (ML) approaches have received attention in earthquake engineering for their potential 
to enhance the accuracy and efficiency of risk assessment [4-7]. Among these approaches, Bayesian Neural Networks 
(BNNs) have emerged as promising tools for modeling complex relationships in data and making probabilistic predictions 
[8]. The large number of parameters during the training phase in ML can lead to overfitting, wherein the model achieves 
high accuracy on the training dataset but demonstrates comparatively lower accuracy on the validation dataset. To mitigate 
this issue, regularization methods like Bayesian regularization have been introduced for neural networks, offering promising 
outcomes in terms of prediction accuracy [9]. By leveraging the capabilities of BNNs, researchers aim to address the 
computational challenges associated with traditional methods while providing valuable insights into complex problems [10-
13]. 

This paper presents a novel approach to quantifying the seismic resilience of highway bridges using BNN modeling. 
Through a case study focused on a class of representative highway bridges in California, the proposed methodology aims to 
demonstrate its efficacy in estimating seismic resilience metrics. By introducing a BNN-based framework for resilience 
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assessment, this research contributes to advancing computational methods for infrastructure resilience evaluation and 
offers valuable insights for enhancing emergency preparedness efforts and decision-making processes in earthquake-
prone regions. 

 
2. Methodology 
 
2.1. Bayesian Neural Network 

The methodology employed in this study aims to quantify the seismic resilience of highway bridges using BNN 
modeling. The BNN model is constructed using a neural network architecture with Bayesian inference techniques. A 
BNN algorithm employs a statistical regularization approach aimed at mitigating overfitting and enhancing model fit 
[14]. This approach involves assigning Bayesian priors to the network parameters, enabling the incorporation of prior 
knowledge and uncertainty into the model. The architecture typically consists of multiple layers of interconnected 
neurons, with Bayesian inference methods such as Markov Chain Monte Carlo (MCMC) or Variational Inference (VI) 
used for probabilistic inference. Hyperparameters, including network depth, width, and regularization parameters, are 
optimized through techniques such as cross-validation or Bayesian optimization. By leveraging Bayesian inference, the 
BNN model captures uncertainty in the data and provides probabilistic predictions, enabling more robust and 
interpretable assessments of bridge resilience.  

Unlike conventional neural networks, where hyperparameters such as weights and biases are singular values, a BNN 
assigns normal distributions to these parameters [15,16]. Consequently, each hyperparameter becomes variable over 
time, yielding a statistical distribution of potential outcomes [17], especially as the model progresses through training 
eras and epochs. This variability proves advantageous in scenarios with limited data, reducing the risk of overfitting by 
introducing variability, or "noise," into the model [18]. However, scaling BNNs to larger or more complex problems 
with extensive data can pose challenges, as the random variation of hyperparameters exacerbates the computational 
complexity already inherent in such tasks [19]. 

 
2.2. Implementation 

Throughout this work, Python was utilized exclusively for programming tasks related to model training. The 
decision to use Python was motivated by its comprehensive range of ML libraries and resources, facilitating the 
implementation of a diverse array of ML techniques across various data structures and problem scenarios. Although 
BNNs are typically mathematically intensive and complex to implement, a Python library developed by Harry24k offers 
a straightforward solution that integrates with PyTorch [17, 20]. This library was utilized in the present study to construct 
a BNN for comparison with the standard artificial neural network (ANN) formulation. The BNN architecture closely 
resembled that of the ANN, with the exception that each layer was replaced by a Bayesian layer featuring a zero mean 
and a standard deviation ranging from 0.01 to 0.50, providing a diverse sampling of BNN architectures' impact on model 
accuracy.  

Training data are fed into the model, and the network parameters are iteratively updated using gradient-based 
optimization algorithms such as stochastic gradient descent (SGD) or Adam. Throughout the training process, the model 
learns to make predictions while capturing uncertainty in the data. Model performance is evaluated using metrics such 
as mean squared error (MSE), coefficient of determination (R-squared), and probabilistic metrics such as predictive 
distributions and uncertainty estimates. The trained Bayesian Neural Network (BNN) model undergoes rigorous 
validation using holdout datasets or cross-validation techniques to assess its generalization performance.  
             
3. Case Study: Seismic Resilience Assessment of Highway Bridges in California 

As a case study to investigate the efficiency of employing BNN in the resilience assessment of bridges, we selected 
two-span box-girder concrete highway bridges in California. Seismic data relevant to this study area, including ground 
motion records and bridge characteristics, were collected from sources such as the National Bridge Inventory and 
previous works [21, 22]. The dataset comprises information on bridge geometry, material properties, and seismic loading 
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conditions. This comprehensive dataset was essential for creating 3-dimensional finite element models of bridges in 
OpenSees and for capturing the diverse factors influencing bridge resilience and ensuring the accuracy and reliability of the 
the BNN model. By incorporating detailed information on bridge attributes and seismic events, the data collection process 
process lays the foundation for robust resilience assessment.  

 
3.1. Resilience quantification using classical approach 

In the analysis of complex systems like structures exposed to seismic excitations, assessing the resilience typically 
involves initially generating a fragility function. Seismic fragility quantifies the conditional probability, indicating the 
likelihood that a structure will reach or surpass a defined damage state (i.e., level of damage) for a given intensity measure 
(IM) of the seismic hazard [23]. A visual representation of this process is presented in Fig. 1 in the form of a flowchart. 

An analytical fragility calculation process based on numerical 
analysis, employing Finite Element Method (FEM) and probabilistic 
computational methods, may require several days or even weeks for a 
single bridge, contingent upon its complexity. This leads to an 
exponential escalation in computational costs. Furthermore, traditional 
computational methods may overlook several significant parameters. 
Previous studies have typically modeled fragility as depicted in 
Equation (2.1), primarily dependent on the ground motion parameter 
IM, without directly integrating various other potentially crucial 
structural parameters [24, 25]. 

 
𝑃𝑃𝑃𝑃𝑝𝑝|𝐼𝐼𝐼𝐼 = 𝑃𝑃[𝐷𝐷𝐷𝐷𝑠𝑠|𝐼𝐼𝐼𝐼] =  Φ�ln(𝐼𝐼𝐼𝐼)−ln (𝜇𝜇𝑑𝑑)

𝛽𝛽𝑑𝑑
�    (1) 

 
In Equation 1, 𝜇𝜇𝑑𝑑 and 𝛽𝛽𝑑𝑑 denote to the median and logarithmic 

standard deviation of the seismic demands, respectively. The variable 
𝐷𝐷𝐷𝐷𝑠𝑠 represent the designated damage states. As outlined in the seismic 
fragility models summary by Gidaris et al., the majority of models 
incorporate four consistent damage states: “slight, moderate, extensive, 
and complete” [23]. In this study, we adopted the normalized 
performance indicator function (𝑄𝑄) (Equation 2) as the fundamental 
component for formulating the seismic resilience of structures. 

 
𝑄𝑄�(𝑡𝑡) = ∑ (1 − 𝑃𝑃𝑃𝑃𝑝𝑝|𝐼𝐼𝐼𝐼) × Φ(𝑡𝑡−𝜇𝜇𝑡𝑡,𝑑𝑑

𝜎𝜎𝑡𝑡,𝑑𝑑
)𝑛𝑛𝐷𝐷𝐷𝐷𝑠𝑠

𝑑𝑑=1    (2) 
 

The recovery trajectory function used in this paper is aligns with 
the recommendation provided by Hazus-MH. It incorporates four 
predefined damage states, with mean recovery times (µt,d) set at 
0.6, 2.5, 75, and 230 days, respectively; and standard deviation (σt,d) set 
at 0.6, 2.7, 42, and 110 days, respectively [26]. 

From Equation 2, bridge resilience (𝑅𝑅) is determined by computing 
the area under the performance indicator function subsequent to the 
occurrence of the hazard. This corresponds to integrating the 
performance indicator function over time, starting from the onset of the 
hazard (𝑡𝑡ℎ) until the conclusion of the recovery process and the 
attainment of the new standard operational level (𝑡𝑡𝑟𝑟): 

 

Fig 1: Traditional structural resilience 
calculation process. GM = Ground Motion, FEM = 

Finite Element Model. 
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𝑅𝑅(𝑡𝑡) = ∫ 𝑄𝑄�(𝑡𝑡)𝑑𝑑𝑡𝑡𝑡𝑡𝑟𝑟
𝑡𝑡ℎ

                                (3) 
 
3.2. Resilience estimation using Bayesian Neural Network 

ML methodologies, as explored in this study, offer a chance to enhance resilience modeling and mitigate certain 
simplifications that were previously unavoidable. ML techniques like artificial neural networks can alleviate the 
computational constraints that imposed some limitations during the development of fragilities. This capability stems 
from ML algorithms' capacity to conduct regression analysis on extensive datasets by identifying emerging patterns and 
learning from their mistakes. 

The BNN model, crafted through the methodology outlined in this research, is deployed to the representative 
highway bridges, enabling the estimation of seismic resilience metrics tailored to each bridge's specifications. A wealth 
of bridge-specific data, encompassing geometric attributes, material properties, and seismic loading parameters, serves 
as input to the BNN model, facilitating the prediction of resilience outcomes (refer to Fig. 2). In this regard, we 
considered the following list of 16 input variable: soil type, girder type, span length, column height, deck width, 
superstructure depth, number of columns per bent, column diameter, reinforcement ratio, abutment height, foundational 
translational and rotational stiffness, concrete strength, reinforcement strength, abutment stiffness, and Peak Ground 
Acceleration (PGA). The model's application yields a spectrum of resilience metrics, including fragility curves, damage 
probabilities, and post-earthquake functionality assessments, furnishing critical insights into the vulnerability of 
highway bridges to seismic events and the ensuing ramifications for transportation network functionality. 

 
Moreover, the case study entails a comparative analysis, pitting the results derived from the BNN-based resilience 

assessment against those garnered through traditional computational methods. Through this comparative lens, the 
advantages of the BNN approach come to the fore, encompassing superior accuracy, efficiency, and nuanced uncertainty 
quantification. Ultimately, the findings derived from the case study offer actionable insights into the seismic resilience 
landscape of highway bridges, that could pave the path towards serving as a cornerstone for infrastructure resilience 
planning, risk mitigation strategies, and emergency response preparedness efforts in the future. Through this 

Fig. 2:  Standard MLP-style ANN, with fully connected neurons in multiple hidden layers. 
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investigation, the case study underscores the promising role of BNN modeling in infrastructure resilience assessment and 
decision-making endeavors in seismic hazard-prone regions. 

 
4. Results and Discussion 

The optimal BNN architecture identified for this problem consists of two hidden layers, each containing 32 neurons, 
utilizing a rectified linear activation function, a commonly used ANN activation function. The Adam optimizer, a popular 
choice for ANN optimization, was employed due to its computational efficiency, particularly suitable for datasets with large 
volumes of data and parameters. Training involved 50 epochs, with each epoch iterating over the entire test set using a 2% 
step without replacement, ensuring no duplication of training data within the same epoch. The training data comprised 
80% of the original dataset, while the test data comprised 16% and the validation data comprised 4%. To facilitate 
comparison, a separate ANN with the same architecture but without Bayesian inference incorporation was also created. 

The ANN-based model demonstrated a validation data resilience prediction accuracy of 89.4% and a test data accuracy 
of 91.1%. Upon evaluating various standard deviations ranging from 0.01 to 0.50, we found that a standard deviation of 0.01 
yielded the highest levels of test and validation accuracy within the given range. The Bayesian distribution yielding optimal 
accuracy in both validation and test sets exhibited a mean of zero and a standard deviation of 0.01, yielding average accuracies 
of 86.4% and 82.9%, respectively, as depicted in Fig. 3. These accuracies were slightly lower than those achieved by the 
standard ANN structure. Despite having the same network architecture, the Bayesian model necessitated significantly longer 
training times compared to the ANN. This disparity can be attributed to the BNN's inherent complexity, which demands 
continuous value spectrum computation for each parameter, thereby imposing a higher computational burden relative to an 
equivalent-dimensional ANN. In general, the BNN model exhibited accuracy values comparable to those of the ANN, with 
the added advantage of mitigating the overfitting problem often encountered in ANN models. 

In comparison with traditional computational methods, the BNN approach demonstrates notable advantages in terms of 
accuracy, efficiency, and uncertainty quantification. By leveraging Bayesian inference techniques, the BNN model 
effectively captures the inherent uncertainties in seismic hazard modeling and bridge response prediction, thereby enhancing 
the reliability of resilience assessments. The results highlight the potential of advanced ML methodologies, such as BNNs, 
in revolutionizing infrastructure resilience assessment practices, offering more robust and interpretable predictions. 

Despite the advancements facilitated by the BNN framework, several limitations and avenues for future research warrant 
consideration. Model uncertainties stemming from inherent complexities in seismic hazard modeling and data limitations 
underscore the need for continued refinement and validation of the BNN model. Moreover, efforts to enhance data 
availability, quality, and interoperability are essential for improving the accuracy and robustness of resilience assessments. 
Future research directions may focus on refining the BNN model architecture, integrating additional data sources, and 
exploring innovative ML techniques to further advance the state-of-the-art in infrastructure resilience assessment 
methodologies. 
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Fig. 3: Model accuracy on test and validation data for different Bayesian standard deviation inputs in BNN model 

 
5. Conclusion 

In conclusion, the seismic resilience assessment of highway bridges utilizing the Bayesian Neural Network (BNN) 
framework tested in this work, showed promising results compared to the traditional finite-element-based approach. 
This project found the key advantages of BNN-based resilience estimations over traditional calculations as lower 
computational costs, a multi-parametrized resilience model, elimination of the need for finite element modeling of 
complex structures, avoidance of nonlinear time history analyses, and a reduction in human errors associated with the 
process. In essence, this results in a potentially more dependable estimation of resilience. Moreover, the BNN approach 
accounts for various sources of uncertainty in the estimation process, treating them as random input variables within the 
framework. 

This work primarily contributes to the advancement in infrastructure resilience assessment methodologies. The 
findings offer broader impacts on actionable insights into vulnerability, damage probabilities, and post-earthquake 
functionality metrics, highlighting the transformative potential of advanced computational methods in addressing the 
multifaceted challenges posed by seismic hazards. The resilience assessment findings inform infrastructure planning, 
risk mitigation, and emergency preparedness efforts, guiding prioritization of retrofitting measures in vulnerable regions 
or bridge types. Additionally, they facilitate targeted risk mitigation strategies, enhancing design standards and 
emergency response protocols to bolster infrastructure resilience and mitigate societal impacts of seismic disasters. 
Through ongoing efforts to refine model architecture, enhance data quality, and address uncertainties, future research 
endeavors may further advance infrastructure resilience assessment practices, ultimately contributing to the safety, 
reliability, and resilience of transportation networks and communities. 
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