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Abstract - Recent earthquakes in southeastern Türkiye have highlighted the need for disaster preparedness in the country's most 

populous city, Istanbul. Scientists believe that a huge earthquake is likely to strike Istanbul. Data envelopment analysis (DEA) is a 

valuable tool for evaluating the efficiency of decision-making units (DMU) in various managerial areas, including disaster management. 

This study employs common-weight DEA-based models, which enable incorporating interval data, to evaluate the earthquake 

vulnerability of Istanbul’s districts. Building stock, and estimated ground motions are taken as inputs while expected disaster losses and 

damages are used as outputs for assessing the earthquake vulnerability. The results depict that the most vulnerable district of Istanbul to 

earthquakes is Fatih while the least vulnerable one is Sile. The proposed earthquake vulnerability evaluation approach can be a practical 

guide for authorities for disaster risk reduction projects. 
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1. Introduction 
The recent earthquakes that occurred in the southeastern part of Türkiye resulted in over 48000 deaths and total damage 

of nearly 103.6 billion US dollars [1].These figures related to loss and damages resulted in concerns about possible 

earthquakes that might occur soon, especially in Istanbul. It is foreseen that Istanbul might be struck by a huge earthquake 

and its consequences will affect all across Türkiye since Istanbul generates forty percent of gross domestic product (GDP) 

[2]. Thus, it is important to be prepared for such a huge earthquake before it occurs. 

In this sense, the aim of this study is to assess the earthquake vulnerability of Istanbul’s districts using common-weight 

data envelopment analysis (DEA). DEA is a widely used approach for efficiency analysis [3]. It is a mathematical 

programming technique that evaluates the relative efficiency of decision-making units (DMUs) that use multiple inputs to 

generate multiple outputs. It is used in numerous managerial problems to compare the efficiency of DMUs [4]. 

Conventional DEA models such as the CCR (the acronym for Charnes, Cooper, and Rhodes) model and the BCC (the 

acronym for Banker, Charnes and Cooper) model have some shortcomings. Firstly, the computational burden of these models 

is relatively high since the models need to be solved n times which is the number of evaluated DMUs. Secondly, these models 

have excessive weight flexibility since each DMU is allowed to choose its own input and output weights to maximize the 

weighted output to weighted input ratio. Another problem caused by the improper weight flexibility is that it may be 

inappropriate to evaluate the same component with different weights when the objective is to rank the alternatives or find 

the best-performing alternative [5]. It is possible to avoid these drawbacks by deploying common-weight DEA models. The 

efficiency scores for DMUs are measured by a common set of weights in these models.  The discriminating power of these 

models are better than conventional DEA models. 

As far as we are aware, no study employed common weight DEA-based models in the context of disaster management 

even though these models provide a more practical approach and facilitate the ranking of all DMUs. Hence, this paper aims 

to evaluate the earthquake vulnerability of Istanbul’s districts using common-weight DEA models. 

The rest of this study is structured as follows. The literature review regarding the studies deploying DEA models within 

the framework of disaster management is given in Section 2. The proposed methodology is provided in Section 3 while 
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Section 4 presents the earthquake vulnerability evaluation of Istanbul’s districts using common-weight DEA-based models 

incorporating interval data. Lastly, conclusion and directions for future research are given in Section 5. 

 

2. Literature Review 
Numerous studies have deployed DEA models in disaster management. These studies primarily focus on comparing 

disaster vulnerability, resilience, and relief efforts across different regions, cities, or provinces. By employing the DEA 

method, researchers aim to identify areas that require improvement and provide recommendations to enhance disaster 

preparedness and response before the occurrence of a disaster. 

Various studies used DEA to evaluate vulnerability to a variety of disasters such as earthquakes, typhoons, droughts 

floods, etc. For instance, Wei et al. [6] analyzed the vulnerability of Chinese regions by using the DEA model. Similarly, 

Huang et al. [7] employed the CCR model to evaluate regional vulnerability in China. The results show that economic 

progress is negatively correlated with regional vulnerability. Saein and Saen [8] used the DEA model to assess earthquake 

vulnerability in Tehran. Li et al. [9] used DEA models to estimate the vulnerability of floods in Hunan in terms of sensitivity, 

risk, and stability. Li et al. [10] analyzed the vulnerability of 31 Chinese provinces by using GDP, death toll, population 

density, economic loss, and disaster frequency. They deployed three-stage DEA to overcome the drawbacks of conventional 

DEA models. Yu et al. [11] used Super-Efficiency DEA (SE-DEA) to estimate the typhoon vulnerability of coastal regions 

in the Maritime Silk Road. Inputs and outputs were determined concerning the economy, agriculture, and population factors. 

Pathak et al. [12] used CCR DEA model with constant returns to scale technique to analyze the flood vulnerability of 21 

districts of the Narmada River. Ma et al. [13] used SE-DEA and Tobit model to analyze the drought vulnerability of corn in 

Manchurian Plain. Recently, Gao et al. [14] tried to assess the earthquake vulnerability of 69 earthquakes by deploying CCR 

and BCC models.  

Various researchers used DEA-based models to assess the resilience of communities and systems in the face of disasters. 

Zou and Wei [15] used the DEA model to analyze the relationship between economic improvement and coastal hazard 

resilience for eight Southeast Asian nations. Ustun [2] evaluated the earthquake resilience capacity of Istanbul’s districts by 

DEA and returns to scale analysis. Then, he ranked the districts based on their disaster resilience. Villano et al. [16] tried to 

assess the resilience of households in response to disasters caused by climates in the Philippines. Using data from a cross-

sectional survey, they tried to calculate the resilience score through network DEA. 

Some studies employed DEA models in the framework of disaster risk or relief. Cheng and Chang [17] employed the 

CRR and BCC DEA models to analyze the efficiency of the disaster reduction risk policy in Yongkang City, Taiwan. 

Barbarosoglu and Ustun [18] calculated the efficiency of the relief organization that attended the relief operations during the 

Marmara earthquake that occurred in Türkiye. Li et al. [19] analyzed the disaster risk reduction investment in China. They 

deployed the CCR DEA model based on the data from 2010 to 2020. 

 

3. Methodology 
Data Envelopment Analysis (DEA) is a linear programming-based technique that is specifically developed to measure 

relative efficiency when employing multiple inputs and outputs without knowledge of which inputs and outputs will have 

the greatest impact on the efficiency score. DEA has been implemented in various sectors to assess the relative efficiency of 

homogenous DMUs. DEA was first introduced by Charnes, Cooper, and Rhodes in 1978 [3]. This model evaluates the 

efficiency of n DMUs that use varying amounts of m inputs to produce s outputs. Each DMU's efficiency is calculated as the 

ratio of its weighted outputs to its weighted inputs. The goal is to optimize this ratio for each DMU under evaluation, thereby 

maximizing their relative efficiency. Then, normalizing constraints that ensure that the output-to-input ratio of every DMU 

is less than or equal to unity are added. Hence, the mathematical model is as 

 

                                                                                     𝑚𝑎𝑥𝐸𝑗0=

∑ 𝑢𝑟𝑦𝑟𝑗0𝑟

∑ 𝑣𝑖𝑥𝑖𝑗0𝑖

                                                                                     (3.1) 

subject to 
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∑ 𝑢𝑟𝑦𝑟𝑗𝑟

∑ 𝑣𝑖𝑥𝑖𝑗𝑖

≤ 1,         𝑗 = 1, … , 𝑛                                                                  (3.2) 

                                                                                     𝑢𝑟  , 𝑣𝑖 ≥ 0;      𝑟 = 1, … , 𝑠 ; 𝑖 = 1, … , 𝑚                                                   (3.3) 

 

where the objective is to maximize 𝐸𝑗0
which denotes the efficiency score and is calculated by the ratio of total weighted 

output to total weighted input for the evaluated DMU. In here, 𝑣𝑖  and 𝑢𝑟 are the weights assigned to input i and output r 

respectively. The 𝑥𝑖𝑗 and 𝑦𝑟𝑗  represent the amount of input i used and output r produced by the jth DMU, respectively. The 

subscript ‘0’ refers to the evaluated DMU. 

Since the fractional programming model above is nonlinear and nonconvex, it is not used in the computation of 

efficiency scores while it can be converted into a linear program [3].  The linear model is as 
 

 

                                                                                                  𝑚𝑎𝑥𝐸𝑗0= ∑ 𝑢𝑟𝑦𝑟𝑗0

𝑆

𝑟=1

                                                                        (3.4) 

subject to 

                                                                                                         ∑ 𝑣𝑖𝑥𝑖𝑗0

𝑚

𝑖=1

= 1,                                                                                  (3.5)       

                                                                                            ∑ 𝑢𝑟𝑦𝑟𝑗 −

𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗

𝑚

𝑖=1

≤ 0, ∀𝑗,                                                                (3.6)    

                                                                                                   𝑢𝑟  , 𝑣𝑖 ≥ ɛ, ∀𝑟, 𝑖.                                                                                      (3.7)         
 

where ɛ stands for an infinitesimal positive number which is included to prevent zero weights. This model can be used 

in case of exact data. However, the data set might also include interval data. To incorporate interval data, the classical CCR 

model can be transformed as follows [20] : 

                                                                                 𝑚𝑎𝑥𝐸𝑗0= ∑[𝑢𝑟 𝑦𝑟𝑗0
𝐿 + 𝑝𝑟𝑗0(𝑦𝑟𝑗0

𝑈 − 𝑦𝑟𝑗0
𝐿 )]

𝑠

𝑟=1

                                                         (3.8)         

subject to  

                                                                           ∑[𝑣𝑖 𝑥𝑖𝑗0
𝐿 + 𝑞𝑖𝑗0(𝑥𝑖𝑗0

𝑈 − 𝑥𝑖𝑗0
𝐿 )]

𝑚

𝑖=1

= 1                                                                       (3.9)      

                                                                        ∑[𝑢𝑟 𝑦𝑟𝑗
𝐿 + 𝑝𝑟𝑗(𝑦𝑟𝑗

𝑈 − 𝑦𝑟𝑗
𝐿 )]

𝑠

𝑟=1

− ∑[𝑣𝑖 𝑥𝑖𝑗
𝐿 + 𝑞𝑖𝑗(𝑥𝑖𝑗

𝑈 − 𝑥𝑖𝑗
𝐿 )]

𝑚

𝑖=1

≤ 0, ∀𝑗 ,            (3.10) 

                                                                                       𝑝𝑟𝑗 − 𝑢𝑟 ≤ 0, ∀𝑟, 𝑗                                                                                   (3.11) 

                                                                                      𝑞𝑖𝑗   − 𝑣𝑖 ≤ 0, ∀𝑖, 𝑗                                                                                    (3.12) 

                                                                                                  ɛ ≤ 𝑢𝑟 ,𝑣𝑖 ∀𝑟, 𝑖                                                                                           (3.13)        
                                                                                                0 ≤ 𝑝𝑟𝑗 , 𝑞𝑖𝑗   ∀𝑟, 𝑖  , 𝑗.                                                                                (3.14)       

 

To deal with the interval data, the model enables each DMU to select its own parameters 𝑝𝑟𝑗  𝑎𝑛𝑑  𝑞𝑖𝑗  , respectively, to 

achieve the optimal efficiency score within the interval range. Despotis and Smirlis [20]  have shown that the results of this 

model are equal to the results of the following model: 
 

 

 

                                                                                               𝑚𝑎𝑥𝐸𝑗0= ∑ 𝑢𝑟 𝑦𝑟𝑗0
𝑈

𝑠

𝑟=1

                                                                            (3.15)         
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subject to  

 

                                                                                        ∑ 𝑣𝑖 𝑥𝑖𝑗0
𝐿

𝑚

𝑖=1

= 1                                                                                           (3.16)      

                                                                                    ∑ 𝑢𝑟 𝑦𝑟𝑗0
𝑈

𝑠

𝑟=1

− ∑ 𝑣𝑖 𝑥𝑖𝑗0
𝐿

𝑚

𝑖=1

≤ 0, ∀𝑗 ,                                                          (3.17) 

                                                                                     ∑ 𝑢𝑟 𝑦𝑟𝑗
𝐿

𝑠

𝑟=1

− ∑ 𝑣𝑖 𝑥𝑖𝑗
𝑈

𝑚

𝑖=1

≤ 0, 𝑗 = 1, . . 𝑛;  𝑗 ≠ 𝑗0                            (3.18) 

                                                                                               𝑢𝑟 ,𝑣𝑖 ≥  ɛ   ∀𝑟, 𝑖.                                                                                      (3.19)        
 

However, in these DEA models, the relative efficiencies can be determined by solving the formulations for each DMU. 

Thus, common performance attribute weights are not used to evaluate DMUs. Further, DMUs are classified into two 

categories such as “efficient” which are the DMUs that receive the efficiency score of one, and “inefficient” for which the 

efficiency score is less than one. Due to the fact that the efficiency scores of all efficient DMUs are 1, further discrimination 

among efficient DMUs is not possible. 

Another issue is that the aforementioned DEA models have excessive weight flexibility that leads to poor discriminating 

power. The weights are assigned in a manner that the efficiency is to be maximized. Thus, the model can assign excessively 

high weights to the factors with superior performance and negligible weights to those with poor performance to maximize 

the efficiency score for the evaluated DMU.  

To overcome these deficiencies, some researchers have proposed common weight DEA models in the existence of 

interval data. For instance, Shirdel et al. [21] presented a Multi-Objective Programming (MOP) model based on common-

weight DEA to calculate the efficiency scores when there exists interval data.   

Similarly, Wen et al. [22]  suggested a modified Mixed Integer Nonlinear Programming (MINLP) minimax efficiency 

model based on common-weight DEA that considers interval data. The model determines the most efficient DMU by solving 

one MINLP. 

Wen et al. [22] calculated the 𝐸𝑗 = 1 − 𝑑𝑗 and this yielded “0” efficiency in their article. However, it is impossible to 

have “0” efficiency score as there is neither “0” output value nor “0” output weights in the illustrative example they have 

provided in the article. This is probably due to a miscalculation as the efficiency scores in these kind of models can be 

obtained as  

                                                
∑ [𝑢𝑟 𝑦𝑟𝑗

𝐿 + 𝑝𝑟𝑗(𝑦𝑟𝑗
𝑈 − 𝑦𝑟𝑗

𝐿 )]𝑠
𝑟=1

∑ [𝑣𝑖 𝑥𝑖𝑗
𝐿 + 𝑞𝑖𝑗(𝑥𝑖𝑗

𝑈 − 𝑥𝑖𝑗
𝐿 )]𝑚

𝑖=1

= 1 −
𝑑𝑗

∑ [𝑣𝑖 𝑥𝑖𝑗
𝐿 + 𝑞𝑖𝑗(𝑥𝑖𝑗

𝑈 − 𝑥𝑖𝑗
𝐿 )]𝑚

𝑖=1

                         (3.20)   

 

4. Earthquake Vulnerability Evaluation 
Input-output selection is very important in DEA studies. Inputs are regarded as the factors that should be minimized 

while outputs are the factors that should be maximized. Numerous variables can be taken into account as inputs when 

evaluating earthquake vulnerability. For example, the age of buildings and building types are important in the vulnerability 

analysis [23]. Besides, it is important to understand the spatial variability of the surface response in a typical scenario 

earthquake [8] . Also, the exposure of the socioeconomic system is important [24]. 

The majority of research in the framework of DEA-based vulnerability analysis used disaster losses, economic losses, 

and affected people as the output factors for the evaluation of earthquake vulnerability [11, 25, 26, 19, 14, 27]. However, 

these factors should be considered as undesirable outputs considering the main logic of DEA.  

The municipality of Istanbul published a report about Istanbul’s Possible Earthquake Loss Estimates Update Project in 

2019 [28]. The possible earthquake loss for the 7.5 magnitudes (Mw) earthquake during the night scenario for each district 

was published as a report. Almost all inputs and outputs used in this study were chosen from this study. In addition, one input 

is taken from IBB Sehir Planlama [29]. The selected inputs and outputs are shown in Table 4.1.  
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The undesirable outputs which are output 1, output 2, and output 3 are transformed into desirable outputs by an 

exponential transformation as follows [30] 
 

                                                                                           𝑦𝑟𝑗
ɤ = (1 − ɜ𝑟)𝑦𝑟𝑗                                                                              (4.1) 

 

The value of  can be determined by trial and error but it is better to define it by a specific approach. Zhou et al.[30] 

determined the value of  in a way that the standard deviation of the data after the transformation is maximized. Similarly, 

the value of  for the undesirable outputs in this study is calculated in this way which is shown by the following formula: 

                                                                      max
√∑ [(1 − ɜ𝑟)𝑦𝑟𝑗 − (

∑ (1 − ɜ𝑟)𝑦𝑟𝑗𝑛
𝑗=1

𝑗
)]

2

𝑛
𝑗=1

𝑛
                                               (4.2) 

 

Then, linear normalization is applied to data.  The exact inputs which are input 1, input 2, and input 3 are normalized 

via 𝑥𝑖𝑗/𝑚𝑎𝑥𝑗(𝑥𝑖𝑗) and transformed outputs are normalized by 𝑦𝑟𝑗
ɤ /𝑚𝑎𝑥𝑗(𝑦𝑟𝑗

ɤ )  [31]. The lower bound data of input 4 and 

input 5 are normalized by  𝑥𝑖𝑗
𝑙 /𝑚𝑎𝑥𝑗(𝑥𝑖𝑗

𝑢 )  and upper bound data are 𝑥𝑖𝑗
𝑢 /𝑚𝑎𝑥𝑗(𝑥𝑖𝑗

𝑢 ) [32]. 

 

 

 

Table 4.1 Input-output indicators and related factors 

 Inputs&Outputs Related Factors 

                                                                     Input 1      Built-Up Area (Ha)       

                     

 

Exposure of the  

Socioeconomic     System 

 

   Input 2 The Number of Buildings Constructed 

Before 2000 

 

  Age of Buildings 

Input 3 The Number of Buildings with More 

than 5 Floors 

 

  Building Type 

Input 4 Estimated PGA (Peak Ground 

Acceleration) for Possible 7.5 Mw 

Earthquake 

 

  Ground Motion 

Input 5 Estimated PGV (Peak Ground Velocity) 

for Possible 7.5 Mw Earthquake 

 

  Ground Motion 

   Output 1 

 

 

The Number of Expected Total Injured 

People in case of Possible 7.5 Mw 

Earthquake during the night 

 

   Disaster Loss 

Output 2 

 

 

The Number of Expected Extremely 

Damaged and Heavily Damaged 

Buildings in case of Possible 7.5 Mw 

Earthquake during the night 

 

   Disaster Loss 

Output 3 The Number of Expected Loss of Life 

in case of Possible 7.5 Mw Earthquake 

during the night 

    Disaster Loss 
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The models were solved using GAMS software. Table 4.2 demonstrates the results of the proposed models. The modified 

CCR model proposed by Despotis and Smirlis [20] yielded twenty-four efficient DMUs. As it was explained in previous 

sections, the CCR model is not able to provide a complete ranking and robust evaluation. Therefore, common-weight DEA 

models with interval data are employed to rank the DMUs. 

 

 

 

 

 Despotis and Smirlis [20] Shirdel et al. [21] Wen et al. [22] 

 

DISTRICTS SCORE         RANK 

𝐸𝑗
𝐿 

 

𝐸𝑗
𝑈 

 Ē𝑗 RANK       SCORE RANK 

Adalar 1.000000 1 0.821125 1.000000 0.910563 3 0.440458 16 

Arnavutkoy 1.000000 1 0.299443 0.303489 0.301466 17 0.621935 6 

Atasehir 1.000000 1 0.440624 0.456375 0.448499 10 0.491218 15 

Avcilar 0.487612 31 0.176602 0.188940 0.182771 29 0.116339 31 

Bagcilar 0.153436 35 0.044603 0.047070 0.045836 36 0.027183 37 

Bahcelievler 0.131468 37 0.092510 0.098861 0.095686 32 0.029144 36 

Bakirkoy 0.190884 34 0.122337 0.131451 0.126894 30 0.046534 34 

Başakşehir 1.000000 1 0.263169 0.269295 0.266232 22 0.427642 17 

Bayrampasa 0.397574 32 0.211585 0.221837 0.216711 26 0.191202 26 

Besiktaş 1.000000 1 0.938594 1.000000 0.969297 2 0.782576 3 

Beykoz 1.000000 1 0.239571 0.243807 0.241689 25 0.577275 9 

Beylikduzu 0.699160 27 0.188789 0.197949 0.193369 28 0.131199 30 

Beyoglu 1.000000 1 0.322723 0.336275 0.329499 15 0.268189 24 

Buyukcekmece 0.567406 30 0.052922 0.055071 0.053996 34 0.171997 27 

Catalca 1.000000 1 0.415587 0.431824 0.423705 11 0.661978 4 

Cekmekoy 1.000000 1 0.805840 0.837413 0.821626 4 0.966993 2 

Esenler 0.656578 28 0.283336 0.295602 0.289469 19 0.11562 32 

Esenyurt 0.139113 36 0.047059 0.049074 0.048066 35 0.034071 35 

Eyupsultan 1.000000 1 0.201183 0.208563 0.204873 27 0.274896 23 

Fatih 0.008038 39 0.002356 0.002393 0.002374 39 0.002668 39 

Gaziosmanpasa 1.000000 1 0.663112 0.697088 0.680100 9 0.412644 18 

Gungoren 0.841503 26 0.689962 0.785873 0.737917 5 0.149173 29 

Kadıkoy 1.000000 1 0.390845 0.402159 0.396502 12 0.334956 21 

Kagithane 1.000000 1 0.680354 0.710409 0.695382 7 0.535886 10 

Kartal 1.000000 1 0.294117 0.312298 0.303207 16 0.33582 20 

Kucukçekmece 0.029100 38 0.010325 0.010790 0.010558 38 0.007046 38 

Maltepe 0.872383 25 0.250879 0.266054 0.258467 24 0.280001 22 

Pendik 1.000000 1 0.104158 0.106491 0.105324 31 0.246286 25 

Sancaktepe 1.000000 1 0.388847 0.403133 0.395990 13 0.531828 11 

Sariyer 1.000000 1 0.271112 0.275127 0.273119 21 0.529378 13 

Silivri 1.000000 1 0.034903 0.035606 0.035254 37 0.359651 19 

Sultanbeyli 1.000000 1 0.369226 0.382294 0.375760 14 0.50319 14 

Sultangazi 1.000000 1 0.685163 0.701806 0.693484 8 0.585951 7 

Sile 1.000000 1 0.691048 0.714114 0.702581 6 1.000000 1 

Sisli 1.000000 1 0.946552 1.000000 0.973276 1 0.654246 5 

Tuzla 0.634882 29 0.078195 0.081816 0.080005 33 0.171565 28 

Umraniye 1.000000 1 0.258413 0.261181 0.259797 23 0.584564 8 

Uskudar 1.000000 1 0.278103 0.284596 0.281350 20 0.531645 12 

Zeytinburnu 0.341840 33 0.280483 0.308270 0.294376 18 0.101656 33 

Table 4.2 Results of the models 
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The model proposed by Shirdel et al. [21] provided a full ranking of DMUs. The results show that Sisli is the best district 

in terms of earthquake vulnerability. However, the ground motion factors were not taken into consideration in this model 

shown in Table 4.3. Therefore, this model did not yield plausible results. 

The model proposed by Wen et al. [22] managed to provide a full ranking of DMUs and yielded only one efficient DMU 

which is Sile. The model assigned more importance to the ground motions and none of the factors were neglected. All factors 

were taken into account as it can be seen in Table 4.3. Thus, it can be claimed that this model provided more appropriate 

results than the model provided by Shirdel et al. [21]. 

The results show that Sile, Cekmekoy, Besiktas,and Catalca are the least vulnerable districts where the expected losses 

and estimated ground motions are very low in comparison to other DMUs while Fatih, Kucukçekmece, Bagcilar, 

Bahcelievler, and Esenyurt are the most vulnerable districts where the ground motion, the population and urbanization level  

in these districts are very high compared to other districts.  

 

5. Conclusion 
The recent earthquakes in southeastern Türkiye have shown the critical need for disaster management preparedness in 

Istanbul due to an expected possible earthquake. To mitigate the potential impact of a likely earthquake in Istanbul, extensive 

research and planning are crucial in the field of disaster management. 

This study evaluates the earthquake vulnerability of Istanbul’s districts using common weight DEA-based models since 

conventional DEA models such as the CCR model and the BCC model have limitations such as high computational burden 

and excessive weight flexibility issues. The input factors also include interval values. Therefore, common-weight DEA-

based models in the existence of interval data are used to assess the earthquake vulnerability analysis of Istanbul. There exist 

a few studies addressing common-weight DEA-based models with interval data in the literature. The models proposed by 

Shirdel et.al [21] and Wen et al. [22] are used from the existing literature. The model proposed by Wen et al. [22] yields 

more plausible results than the model proposed by Shirdel et al. [21] due to the fact that the ground motion factors were 

neglected in the model proposed by Shirdel et al. [21] . 

Consequently, this study is, as far as we are aware, the first to apply common-weight DEA-based models to vulnerability 

assessment and disaster management. Moreover, this is the first study that evaluates the earthquake vulnerability of Istanbul’s 

districts using common-weight DEA-based models. The results of this earthquake vulnerability evaluation can be a guideline 

for the authorities to prepare Istanbul for a possible earthquake. For instance, urban transformation projects can be prioritized 

district by district according to the results of this work. Similarly, the most vulnerable districts according to this study can 

be given more importance to be well prepared for a possible earthquake. 

During the implementation of the analysis, the main problem was unavailability of data. The earthquake vulnerability 

evaluation of Istanbul’s districts can be improved through obtaining more data, and thus, the study can be enhanced with 

more input and output factors. Besides, the common-weight DEA models with interval data are limited. The more the models 

exist, the better the analysis can be conducted. 

 

Weights Shirdel et al. [21]    Wen et al. [22] 

v1 0.584937 0.535956 

v2 0.185500 0.265527 

v3 0.000001 0.265527 

v4 0.027585 0.265527 

v5 0.000001 0.869836 

u1 0.000001 0.265527 

u2 0.201974 0.265527 

u3 0.000001 0.265527 

      Table 4.3 Input-output weights  
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