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Abstract - This study focuses on quantifying the critical parameter of column drift ratio in bridge engineering and proposes 
a novel kernel-based regression approach to enhance the performance-based seismic assessment of bridge systems. 
Traditionally, analytical methods in this field have relied on power-law functions of a single ground motion intensity 
measure. However, recent research has explored alternative models, though the application of machine learning (ML) 
approaches for bridge demand quantification and performance-based seismic assessment remains largely untapped. To 
address this gap, we introduce an advanced ML algorithm, specifically a kernel-based Gaussian regression approach, to 
estimate the column drift ratio metric for bridges. The effectiveness of the proposed model is demonstrated through its 
application to a representative class of highway bridges in California. The results reveal that the kernel-based model performs 
comparably to conventional approaches, underscoring its significance in efficiently estimating column drift ratio within the 
performance-based engineering framework. Importantly, the model's implications extend beyond accurate estimation, as it 
can inform infrastructure resilience assessments and facilitate rapid decision-making processes post-seismic events. By 
harnessing the capabilities of ML algorithms, this approach presents a compelling alternative to conventional methods, 
advancing earthquake engineering practices and providing valuable insights into the behavior of bridge systems under 
seismic conditions.  
 
Keywords: Probabilistic seismic demand model, performance-based analysis, machine learning, bridge seismic 
performance, Kernel-based regression, column drift ratio, bridge engineering, highway bridges. 
 
1. Introduction 

Bridges are critical components of transportation infrastructure, upon which global economies and societies heavily 
depend [1]. Research has shown that these structures are highly vulnerable to seismic hazards, and their potential failure 
could have substantial consequences for transportation system operations [2]. Consequently, it is imperative to 
comprehensively assess the fragility and seismic risk of bridges by evaluating their seismic responses, commonly referred to 
as Engineering Demand Parameters (EDPs) [3]. 

Within the framework of Performance-Based Earthquake Engineering (PBEE), Probabilistic Seismic Demand Models 
(PSDMs) are commonly used to predict various bridge EDPs, such as deformations, drifts, and accelerations [4]. The 
development of effective PSDMs plays a crucial role in risk and hazard quantification, as well as in informed decision-
making [5]. These models establish functional relationships between ground motion intensity measures (IMs) and EDPs [6], 
[7], like column drift ratio. PSDMs provide estimates of the demands imposed on bridge columns under simulated seismic 
scenarios, enabling engineers to evaluate the probability of exceeding specific drift levels and the associated dispersion [8]. 

In recent years, there has been a growing emphasis on performance-based seismic design, wherein bridge’s column 
relative drift is considered a critical index for determining the need for post-earthquake column repair or full reconstruction 
[9]. While significant advancements have been made in estimating this crucial demand component, conventional 
methodologies employed for the assessment of column relative drift often entail computationally intensive analyses and may 
not comprehensively account for the complex dynamic characteristics of bridge performance under seismic excitation [10]. 

Amidst these challenges, the field of earthquake engineering has witnessed a surge of interest in the application of 
machine learning (ML) techniques, which hold the potential to enhance the accuracy and efficiency of EDP assessment [7], 
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[11], [12]. Among the emerging ML approaches, kernel-based methods have demonstrated promising capabilities for 
modelling complex relationships within data and generating probabilistic predictions [13]. By leveraging the capabilities 
of kernel-based frameworks, researchers aim to address the computational hurdles associated with traditional 
methodologies, while simultaneously providing valuable insights into the intricate dynamics underlying bridge 
performance under seismic loading [14]. These advancements hold the promise of advancing the state-of-the-art in 
performance-based earthquake engineering and supporting more informed decision-making processes. 

This research paper’s endeavour presents a novel kernel-based modelling approach to quantifying the column drift 
ratio of highway bridges. By conducting a case study focused on a representative class of California highway bridges, 
the proposed methodology seeks to demonstrate its efficacy in estimating the critical seismic demand metric of column 
drift ratio. Through the introduction of this kernel-based framework for demand assessment, the study contributes to the 
advancement of computational methods employed in the domain of infrastructure Probabilistic Seismic Demand 
evaluation, offering insights that can inform and enhance emergency preparedness efforts, as well as support more robust 
decision-making processes in regions prone to seismic hazards. 

 
2. Methodology 
2.1. Gaussian Kernel 

This study presents a novel and influential methodology for predicting and quantifying column drift ratios in 
highway bridges using the Gaussian Kernel (GK) algorithm, a powerful nonlinear regression technique. In contrast to 
conventional learning approaches, the GK algorithm eliminates the need for time-consuming iterative learning 
processes, such as gradient descent, thus offering distinct advantages [15]. As demonstrated in Figure 1, at the core of 
the GK algorithm lies the calculation of a weighted average of neighboring data points to predict the column drift ratio 
at a query point. Equation 1 represents this calculation, where 𝑦𝑦 

∗ represents the predicted column drift ratio at the 
query point 𝑥𝑥 

∗. The weights assigned to these neighboring points are determined by the Gaussian Kernel function, as 
given by equation 2, where 𝑘𝑘 (𝑥𝑥∗, 𝑥𝑥𝑘𝑘) represents the weight between the query data point 𝑥𝑥 

∗ and its neighboring 
location 𝑥𝑥𝑘𝑘 [15], [20], [21],𝑎𝑎𝑎𝑎𝑎𝑎 [7]. 

The Gaussian Kernel function incorporates the variance (𝜎𝜎2) serves as a bandwidth parameter to determine the 
weights, with the spatial distance between 𝑥𝑥 

∗ and 𝑥𝑥𝑘𝑘  influencing the weighting scheme [16], as shown in Figure 1. 
The variance parameter determines the width of the Gaussian distribution controlling the extent of influence that each 
neighboring point has on the prediction at the query point [17]. A higher variance value results in a broader Gaussian 
distribution, assigning relatively higher weights to data points that are further away from 𝑥𝑥 

∗, while a lower variance 
value leads to a narrower Gaussian distribution, giving more prominence to neighboring points in the immediate 
vicinity to 𝑥𝑥 

∗. By adjusting the value of the variance, the GK algorithm achieves a balance by effectively trading off 
variance and bias. This trade-off takes into consideration the spatial distance of neighboring data points, resulting in 
the prevention of overfitting and underfitting [17]. As a result, the algorithm can accurately estimate column drift 
ratios, leading to more precise estimations [18], [19], [15], [20], [21].  

 
𝑦𝑦𝑖𝑖∗ =

∑ (𝑘𝑘 (𝑥𝑥∗,𝑥𝑥𝑘𝑘)𝑦𝑦𝑘𝑘)𝑞𝑞
𝑘𝑘=1
∑ 𝑘𝑘 (𝑥𝑥∗,𝑥𝑥𝑘𝑘)𝑞𝑞
𝑘𝑘=1

                                                                                  (1) 

𝑘𝑘 (𝑥𝑥∗, 𝑥𝑥𝑘𝑘) = exp �− (𝑥𝑥∗−𝑥𝑥𝑘𝑘)2

2𝜎𝜎2
�                                                                            (2) 

 
This adaptive weighting scheme, influenced by the gaussian variance in equation 2, ensures that the regression 

model focuses on the most relevant and informative data points, making it resilient to noise and outliers. Additionally, 
the nonlinearity of the GK algorithm enables it to capture complex relationships between input variables and column 
drift ratios. 
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Fig. 1. Illustration of a Gaussian kernel function. 

 
2.2. Implementation 

In this paper, the nonlinear estimation of the column drift ratio using Gaussian kernel regression modelling was 
implemented exclusively in MATLAB. Specifically, the fitrkernel function from MATLAB's Statistics and Machine 
Learning Toolbox was employed to fit the Gaussian kernel regression model [22]. The input features for the Gaussian kernel 
regression model included bridge structural properties and ground motion intensity measures (IMs), namely peak ground 
acceleration (PGA) and spectral acceleration at 0.5 seconds (SA_05). 

The OptimizeHyperparameters parameter in the fitrkernel function was set to 'auto', enabling the tuning of critical 
hyperparameters with a Bayesian optimization algorithm. Over the course of 30 training epochs, this adaptive algorithm 
dynamically adjusted the kernel scale, regularization coefficient (λ), and tolerance threshold (ε) to determine the optimal 
configuration for enhanced model performance [22], [23], [24]. 

 This auto option also facilitated the standardization of the input features, a common pre-processing step in regression 
to ensure numerical stability and improve the model's performance. To ensure result reproducibility, a set of random seeds 
was applied prior to fitting the Gaussian kernel regression model. For each training epoch, the kernel scale, lambda, epsilon 
(measured as mean squared error), and objective function were estimated, with the optimal model ultimately selected based 
on the lowest cross-validation loss across the 5 folds. The minimum observed objective and estimated minimum objective 
are depicted in Figure 6, respectively showing the performance of the model [22]. 

It is noteworthy that the large number of parameters involved during the training phase of machine learning models 
can potentially lead to overfitting, whereby the model achieves high accuracy on the training dataset but exhibits 
comparatively lower performance on the validation dataset. To mitigate this issue, a regularization method, like Ridge 
regularization, automatically have been introduced for this modelling framework, offering encouraging outcomes in terms 
of enhancing prediction accuracy and generalization [22]. 
 
3. Case Study 

Multi-span Simply Supported concrete girder bridges representative of bridges in the Central and Eastern United States 
was considered herein. The bridge parameters considered in this study are listed in Table 1. The space of these parameters 
was spanned by Latin Hypercube Sampling [25] to develop a training set consisting of 1044 bridge parameters and a test set 
consisting of 108 bridge parameter combinations. For each bridge parameter combination, a finite element model was 
developed. The bridge model consisted of a grillage deck model wherein the longitudinal elements represented the girders 
and the transverse elements represented the bridge deck slab. The columns and bent beams were modelled using 
displacement-based beam column elements with fiber sections which included separate fibers representing cover concrete, 
confined concrete, and rebars. The effects of transverse reinforcement were modelled following previous research [26]. The 
elastomeric bearings, abutments, and foundations were modelled using phenomenological models, details can be found in 
another references [27]. It must be noted that each bridge parameter combination leads to a bridge with different geometry, 
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material properties, and deterioration condition for columns and bearings. Each of these bridges was paired with a 
randomly selected ground motion from the combined suite of synthetic ground motions developed by Wen and Wu 
[28] and Rix and Fernandez [29]. Correspondingly, the response of the bridge components – columns, bearings, and 
abutments, were determined. Specifically, the key engineering demand parameter of interest in this paper is the relative 
column drift ratio which is used as the output of the Kernel-based predictive demand model. This data is also available 
publicly at DesignSafe cyberinfrastructre [30].  
 

Table 1. The list of input variables for the kernel regression model 
Input Seismic analysis characteristic Input Seismic analysis characteristic 

𝒙𝒙𝟏𝟏 Concrete compressive strength 𝑥𝑥24 Concrete cover depth 
𝒙𝒙𝟐𝟐 Steel yield strength 𝑥𝑥25 Number of girders along the width of the 

deck 
𝒙𝒙𝟑𝟑 Coefficient of friction for bearing pad 𝑥𝑥26 Girder spacing 
𝒙𝒙𝟒𝟒 Stiffness of bearing pad 𝑥𝑥27 Column spacing 
𝒙𝒙𝟓𝟓 Dowel strength 𝑥𝑥28 Deck slab c/s area 
𝒙𝒙𝟔𝟔 Dowel gap 𝑥𝑥29 Girder steel area 
𝒙𝒙𝟕𝟕 Abutment passive stiffness 𝑥𝑥30 Girder concrete strength 
𝒙𝒙𝟖𝟖 Abutment active stiffness 𝑥𝑥31 Ix of deck slab 
𝒙𝒙𝟗𝟗 Foundation vertical stiffness 𝑥𝑥32 Iz of deck slab 
𝒙𝒙𝟏𝟏𝟏𝟏 Foundation transverse stiffness 𝑥𝑥33 Ix of girder 
𝒙𝒙𝟏𝟏𝟏𝟏 Mass participation ratio 𝑥𝑥34 Iz of girder 
𝒙𝒙𝟏𝟏𝟐𝟐 Damping ratio 𝑥𝑥35 EQ direction 
𝒙𝒙𝟏𝟏𝟑𝟑 Gap 1 (used for bearing model) 𝑥𝑥36 Earthquake ground motion number 
𝒙𝒙𝟏𝟏𝟒𝟒 Gap 2 (used for bearing model) 𝑥𝑥37 Weight of one AASHTO prestressed 

girder 
𝒙𝒙𝟏𝟏𝟓𝟓 Gap 3 (used for bearing model) 𝑥𝑥38 Slab thickness 
𝒙𝒙𝟏𝟏𝟔𝟔 Gap 4 (used for bearing model) 𝑥𝑥39 Bearing pad area 
𝒙𝒙𝟏𝟏𝟕𝟕 Number of spans 𝑥𝑥40 Bearing pad thickness 
𝒙𝒙𝟏𝟏𝟖𝟖 Span length 𝑥𝑥41 Decrease in rebar diameter 
𝒙𝒙𝟏𝟏𝟗𝟗 Number of columns 𝑥𝑥42 Stiffness factor to account for oxidation 

of elastomeric bearings 
𝒙𝒙𝟐𝟐𝟏𝟏 Column height 𝑥𝑥43 Decrease in bearing dowel diameter 

𝒙𝒙𝟐𝟐𝟏𝟏 Column diameter 𝑥𝑥44 PGA  
𝒙𝒙𝟐𝟐𝟐𝟐 Longitudinal steel reinforcement 

ratio 
𝑥𝑥45 Sa at 0.5 seconds 

𝒙𝒙𝟐𝟐𝟑𝟑 Transverse steel reinforcement ratio   

*Sa represents spectral acceleration, and PGA represents arithmetic mean of the two ground motion components 
 
4. Discussion 

This study introduces a novel approach to predicting and quantifying column drift ratios in highway bridges 
using a Gaussian Kernel-based regression model. The integration of this machine learning technique addresses some 
of the key limitations inherent in conventional seismic demand modeling methods, which often rely on power-law 
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functions of a single ground motion intensity measure. By leveraging the capabilities of Gaussian Kernel regression, the 
proposed model effectively captures the complex nonlinear relationships between input variables and the column drift 
ratio, enhancing the accuracy and efficiency of seismic performance assessments.  

The methodology was rigorously tested on a dataset representative of multi-span simply supported concrete girder 
girder bridges in the Central and Eastern United States. The use of Latin Hypercube Sampling to develop a comprehensive 
training and test set ensured that the model was exposed to a diverse range of bridge configurations and ground motion 
scenarios. The Gaussian Kernel-based model demonstrated strong performance, as indicated by its ability to produce 
accurate predictions of the column drift ratio. The tuning of hyperparameters through Bayesian optimization further refined 
the model, balancing variance and bias to prevent overfitting and enhance generalization.  

Fig. 2. illustrates the distributions of the seismic demand parameter "Column Drift Ratio" for the bridge, along with 
seismic analysis structural characteristics including column height, column diameter, span length, and deck slab Iz for a 
given set of peak ground acceleration records "PGA". A noteworthy observation from each plot is the presence of distinct 
areas wherein larger ratios of column drift are observed, in response to seismic characteristic components and notably the 
PGA records. This finding suggests that these areas are more susceptible to increased column drift, highlighting the 
importance of considering the combined effects of PGA records and seismic characteristics in comprehensively assessing 
the bridge's behaviour, vulnerability, and conducting fragility analyses. 

 

 
 

Fig. 2. Column drift ratio variability in response to PGA records and seismic characteristics 
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Fig. 3. and Fig. 4. illustrate the objective function values and the hyperparameters obtained throughout the 
optimization process. The plot presents the best estimated objective function value in red, plotted against the 
corresponding iteration number. Simultaneously, the best observed objective function value is represented in blue. 
The red and blue lines depict the achieved fit, resulting in an approximate 21% loss for the default 5-fold cross-
validation after the 9th iteration. This visualization provides a clear and concise representation of the optimization 
algorithm's convergence and the performance of the objective function throughout the iterative process. 

One of the significant advantages of the proposed model is its computational efficiency. Unlike traditional 
methods that require iterative learning processes, the Gaussian Kernel approach eliminates the need for such processes, 
making it a more time-efficient solution for seismic demand estimation. This efficiency, combined with the model's 
robust performance, underscores its potential as a valuable tool in performance-based earthquake engineering.  
 

 
 

Fig. 3. The performance of the objective function during the iterative process using Bayesian optimization. 
 

 
Fig. 4. Results of Kernel algorithm for 66 iterations 
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5. Conclusion 
In conclusion, this study presents a Gaussian Kernel-based regression model for predicting column drift ratios in 

highway bridges, offering a novel and efficient approach to seismic performance assessment. By leveraging the strengths of 
of machine learning, particularly the Gaussian Kernel algorithm, the proposed model addresses the limitations of 
conventional seismic demand modeling methods and provides accurate, computationally efficient predictions. The 
methodology was validated through a comprehensive case study involving multi-span simply supported concrete girder 
bridges in the Central and Eastern United States, with hyperparameter tuning via Bayesian optimization ensuring robust 
performance. The successful application of this model demonstrates its potential to enhance performance-based earthquake 
engineering, offering valuable insights into bridge behavior under seismic loading and supporting informed decision-making 
in regions prone to seismic hazards. The availability of the dataset on the DesignSafe platform further underscores the model's 
applicability and potential for future research.  
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