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Abstract – Machine Learning (ML) is frequently utilized in prediction tasks; however, its applications in hydropower forecasting, 

particularly in forecasting hourly power production, has not been thoroughly investigated. In this paper, two Deep Learning (DL) models, 

namely an autoregressive neural network and Long Short-Term Memory, are compared to a seasonal autoregressive moving average 

(SARIMA) model to forecast the hourly power production at a hydropower station situated in Linköping, Sweden. Hyperparameter 

optimization algorithms are used to identify suitable DL models and algorithms for automatic model identification of SARIMA models 

are utilized. The three models are evaluated using a rolling origin strategy on a test dataset that consists of 10 months (January – October 

2023) of hourly power production. The DL models provided similarly accurate forecasts as the SARIMA model according to mean 

squared error and mean absolute error. However, the DL models are poorly calibrated, resulting in lower coverage compared to the 

SARIMA model. Furthermore, the models are using a univariate time series (i.e., using historical power production to forecast future 

power production) and future studies need to explore additional variables that may be useful in providing a more accurate forecast. 
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1. Introduction 
Hydropower constitutes an important role in the renewable energy mix. In 2022, hydropower accounted for 37% global 

renewable energies capacity [1], and in Sweden, hydropower generated 45% of all electricity in 2020 [2]. As the expansion 

of intermittent electricity production, such as wind and solar power, continues, power sources with controllable production 

will become increasingly important for balancing the power grid. Increased digitalization in the energy sector allows for 

large amounts of data to be collected which can be used for Machine Learning (ML) and Deep Learning (DL) applications. 

Examples of ML and DL within the energy sector include forecasting energy use and demand, fault detection, predicting 

power output from intermittent power sources such as wind and solar power [3]. In their systematic review, Krechowicz et 

al. [4] investigated 262 peer-reviewed articles employing ML application to forecast renewable energies and the authors 

found that only 13 articles were related to hydropower. Bernardes et al. [5] investigated 73 peer-reviewed papers of ML 

application in hydropower and concluded that research on ML applications with hourly time resolution is less common 

compared to research conducted with annual or monthly time resolution. Polprasert et al. [6] used autoregressive moving 

average (ARIMA) models to forecast the monthly power production at a hydropower station in Vietnam. The authors 

concluded that the ARIMA model performed well, and the accuracy of the forecast was satisfactory, but caution needs to be 

considered due to environmental and climate condition which may have an impact on the hydropower production. However, 

the authors did not explore alternative models in addition to the ARIMA model. DL has also been studied in forecasting 

hydropower production. Barzola-Monteses et al. [7] compared multi-layer perceptron (MLP), Long Short-Term Memory 

(LSTM) models and ARIMA to forecast the monthly gross power hydropower production. The authors utilized a simple grid 

search to find a good selection for hyperparameters in the DL models. It was concluded that the MLP was an appropriate 

choice for the given dataset and that finding a good choice for hyperparameters is important for predictive performance. 
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Numerous scientific investigations have been conducted on prediction of the power production from renewable energy 

sources. However, to the best of the authors’ knowledge, there has been insufficient research conducted on ML applications 

in hydropower and more specifically on forecasting hourly power production. This research gap is also highlighted by [4, 5]. 

The first objective of this paper is to compare the predictive performance of neural networks and LSTM with a seasonal 

ARIMA model (SARIMA) according to mean squared error and mean absolute error. The second objective is to study the 

estimated model uncertainty in the forecast and compare the accuracy and quality of the estimated forecast intervals by 

assessing the width and the coverage of the intervals.  

 
1.2 Data 
 The data set consists of hourly measurements of power production from the Odensfors hydropower station located in 

the river Svartån. Svartån runs from the lake Sommen to lake Roxen in Linköping, Sweden. Fig. 1 presents the hourly power 

production from June 2020 to October 2023. The power production has a yearly seasonality with low power production 

during the summer and an increased power production during fall, winter, and spring where precipitation, snowmelt and 

surface runoff increases which subsequently affects the water flow. 

 
Fig. 1: Hourly power production from June 2020 to October 2023. 

  

 The time series is split into three disjoint subsets, a training, a validation, and a test data set. The training set is used 

to estimate the models, while the validation set is used to adjust model configurations in attempt to improve the predictive 

performance. The final evaluation is performed on the test set, where the models are compared. The training set contains 

measurements between 2020-07-01 and 2022-07-31 (𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 18265), the validations set from 2022-08-01 to 2022-12-

31 (𝑛𝑣𝑎𝑙𝑖𝑑 = 3673), and the testing set from 2023-01-01 to 2023-10-11 (𝑛𝑡𝑒𝑠𝑡 = 6817). 

 

2. Theory 
A time series consists of measurement over time, and if the magnitude of the observations in the time series steadily 

increase or decrease over time, then the time series is said to have a trend. The time series may exhibit a seasonal pattern, 

which is a pattern that occurs due to seasonal factors and the seasonal effects are fixed for the time series [8]. Forecasting 

in time series analysis means to predict the future as accurately as possible [8]. Let 𝑦{1:𝑛} be a time series which consists 

of 𝑛 measurements, then the objective when forecasting is to correctly predict 𝑦{𝑛+1:𝑛+𝐻} where 𝐻 is the number of time 

steps into the future. 

 
2.1 Autoregressive Moving Average models 

  The ARIMA model that consists of two components, the moving average (MA) part of order 𝑞 and the 

autoregressive (AR) part of order 𝑝 [8]. Eq (1) presents the formula of 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) and is written as 

 

yt
′ = c + ϕ1yt−1

′ + ⋯ + ϕpyt−p
′ + θ1ϵt−1 + ⋯ + θqϵt−q + ϵt, 

 
 (1) 
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where yt
′ is the 𝑑:th degree of first differencing of the original time series and 𝑐 is the estimated intercept of the model. 

ϕ1, … , ϕ𝑝 and θ1, … , θ𝑞 are the estimated coefficients for the AR and MA part respectively. Seasonality in the data can be 

handled by extending the ARIMA model into a SARIMA model by including AR and MA terms at the seasonal lags [8] as 

presented in Eq (2). Let 𝑚 be the determined seasonality in the time series, then the 𝑆𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑚 model is 

expressed as 

 

yt
′ = c + ϕ1yt−1

′ + ⋯ + ϕpyt−p
′ + Φ1 yt−m

′ + ⋯ +  Φ𝑃yt−mP
′ + 

θ1ϵt−1 + ⋯ + θqϵt−q + Θ1ϵt−m + ⋯ + ΘQϵt−mQ +  ϵt, 
 (2) 

 

where Φ1, … , Φ𝑃 and Θ1, … , Θ𝑄 are the estimated cofficients of the seasonal AR and MA parts. The autocorrelation function 

(ACF) and partial autocorrelation function (PACF) can be used to identify a SARIMA model in Eq. (2). However, identifying 

a SARIMA model using ACF and PACF is a subjective choice and may be more difficult to interpret. Algorithms to identify 

SARIMA models have been introduced to make model identification easier (e.g., [9]). The algorithm introduced by Hyndman 

and Khandakar [9] is initialized by estimating four models, and the best model according to the information criteria AIC is 

kept and set to the “current model”. After identifying the best model, variations to 𝑝, 𝑑, 𝑃 and Q in the current model are 

performed to explore additional models that may be a better alternative according to AIC. This extra step is then repeated 

until convergence where a model with a lower AIC cannot be found. 
 
2.2. Neural networks and Deep Learning models 

Neural networks (NN) form the foundation of DL, where the network are used to approximate the unknown function 

that generates the data [10]. The network is parametrized by the weights which are estimated by minimizing a cost function 

to better approximate the unknown function [10]. NN allows for non-linearity to be modelled which is achieved by 

introducing non-linear activation functions in the units of the network (e.g., the rectified linear unit, sigmoid function, or the 

hyperbolic tangent function). The activations functions and the corresponding graphs are visualized in Fig. 2. The rectified 

linear unit takes the input and sets the negative values to zero, otherwise it is linear. The sigmoid function squeezes the input 

into the range [0,1], and similarly the hyperbolic tangent takes the input and squeezes it into range [-1,1]. 

 

 
Fig. 2: From left to right, rectified linear units (ReLU), sigmoid and hyperbolic tangent (tanh). 

 

NN can be used for time series forecasting by feeding the network previous values in the time series as inputs, that is 

creating an autoregressive neural network. The autoregressive neural networks (AR-net) allow a flexible neural network to 

process a time series and forecast the future time steps. The inputs of AR-net are previous values of the time series of any 

order 𝑝 which needs to be determined prior to training the model. AR-net can easily fit a high order of the auto-regressive 

part [8, 11]. 
The LSTM model was originally developed by Hochreiter and Schmidhuber [12] to handle computational difficulties 

that Recurrent Neural Networks (RNN) have with training on longer sequences. RNN is a type of network used to process 

sequential data but often have problems with either vanishing or exploding gradients, resulting in unstable training on longer 

sequence [13, 14]. The idea of LSTM is to create paths which controls the flow of information which allows the gradient to 

neither vanish nor explode, resulting in more stable training.  LSTM consists of three types of gates: the forget gate, the 
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external input gate and the output gate [10]. The forget gate allows for parts of the memory of the LSTM to be forgotten, 

the external input gates controls how much new additional information should be added onto the LSTM memory and 

finally the output gate controls how information from the LSTM memory should be used in the output [10]. 

 
2.5. Monte Carlo Dropout 

  Dropout is a technique used to regularize the NN to prevent it from overfitting to the training data. With dropout, 

units in the NN are randomly removed during training preventing the weights connected to the corresponding unit from 

being updated during backpropagation [15].  Although dropout is used to prevent overfitting, enabling dropout during 

prediction allows for model uncertainty in the forecast to be estimated by performing several forward passes [16]. 

Allowing dropout during prediction is called Monte Carlo (MC) dropout. The forward passes will become stochastic 

depending on which set of weights that remain at each forward pass resulting in different forecasts for each forward 

pass. By performing several stochastic forward passes, the marginal predictive distribution can be approximated in which 

the model uncertainty can be estimated. 
 
2.6. Forecasting strategies 

There are different strategies in how a model can be designed to forecast the future, such as the recursive strategy 

and the multi-input multi-output (MIMO). Given an input sequence, the recursive forecasting strategy performs one 

step predictions and then use the prediction as input to predict the next time step. An arbitrary long horizon can easily 

be forecasted with the recursive strategy due to predictions being re-used in the input sequence to the model [17]. 

However, due to the recursion of using predictions as inputs, errors made by the model may be accumulated resulting 

in inaccurate forecast due to the previous erroneous forecasts. Using MIMO, the model is designed to forecast the 

whole horizon in one step meaning that the forecast is no longer a scalar but a vector of length 𝐻 [17]. MIMO does 

not suffer the problem with accumulated errors that the recursive strategy has due to the model is optimized to predict 

the whole horizon in one step.  
 
2.7. Hyperparameter optimization 

 NNs have adjustable configurations called hyperparameters (HP) which influence the predictive performance of 

the model. The HPs are set prior to training the model and identifying the HPs is a time-consuming task due to the 

numerous combinations of HPs to evaluate. Furthermore, the selection process of HP may also introduce problems with 

replication due to the subjective choices made by the researcher in selecting the hyperparameters [18]. Hyperparameter 

optimization (HPO) aims to assist in finding a good selection of hyperparameters which results in small predictive errors. 

Hyperband, introduced by Li et al. [19],  is built upon the idea of successive halving. Successive halving (SH) explores 

different set of hyperparameters and continuously discard half of the combinations of HPs which results in poor 

predictive performance. This is repeated until convergence where only one combination of HPs remain [20]. Hyperband 

applies successive halving and a grid search over the number of configurations of hyperparameters, allowing for a faster 

exploration of hyperparameters [19]. 

 

3. Methods 
  The model building procedure can be summarized in four steps, see Fig. 3. Initially, the data is pre-processed by 

taking the first order difference of the time series for the DL models, described in section 3.1. For the SARIMA model, 

differences may be taken in the first order but also in the seasonal order. After pre-processing the time series, models 

are built on the training set, using hyperparameter optimization for DL and automated model identification of SARIMA 

model. After estimating the models, the uncertainty in the forecast is estimated for each model as described in section 

3.2. Finally, all models are compared according to the evaluating metrics described in section 3.3. 
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Fig. 3: Flowchart of methodology in the performed experiments. 

 
3.1 Data pre-processing 

 Prior to training the DL models, the data has been pre-processed by taking the first order difference 𝑧𝑡 = 𝑦𝑡 − 𝑦𝑡−1. 

Instead of predicting the actual power production at any given time point, the expected difference in production between two 

consecutive time points is instead predicted. After forecasting the horizon of the differenced time series, the predictions must 

be post-processed to represent power production as expressed in Eq (3). For any given time point 𝑡 + ℓ, the predicted power 

production is estimated as  

�̂�𝑡+ℓ = 𝑦𝑡 + ∑ �̂�𝑡+ 𝑖,

ℓ

𝑖=1

 (3) 

 

where ℓ ∈ [1, 𝐻]. This means that the forecast �̂�𝑡+ℓ is the last observed value 𝑦𝑡 in the day before and the cumulative sum 

of the forecasts of the differences between two time points up until the time point of interest 𝑡 + ℓ. 
 
3.2 Estimation of model uncertainty 

To estimate the model uncertainty in the forecast, several stochastic forward passes need to be performed, and the results 

stored. The number of stochastic forward passes is considered a hyperparameter and needs to be chosen prior to training the 

model uncertainty. In this paper 100 stochastic forward passes are performed to estimate the model uncertainty. Furthermore, 

the prediction intervals with 95% confidence are constructed by evaluating the 2.5th and 97.5th percentiles of the MC dropout 

simulation. The lower and upper bound of the prediction intervals are evaluated before transforming back the forecast into 

the original time series, according to Eq (3). 

 
3.3 Model evaluation 

Evaluation of the models consider both the accuracy of the point estimates in Eq (3) but also the uncertainty in the 

forecast given by the models. To assess the forecast accuracy two metrics are used, mean squared error (MSE) in Eq (4) and 

mean absolute error (MAE) in Eq (5). Let �̂�𝑡+ℓ be the point prediction made by the model at time point 𝑡 + ℓ. Furthermore, 

let the observed value of the test point be 𝑦𝑡 + ℓ, then MSE is defined as  

 

MSE =
∑ (𝑦𝑡 + ℓ − �̂�

𝑡+ℓ)
2𝐻

ℓ=1

𝑛𝐻
, 

 

(4) 

where 𝑛𝐻 is the length of the forecast horizon. Similar, MAE is defined as 

 

MAE =
∑ |𝑦𝑡+ℓ − �̂�

𝑡+ℓ|𝐻
ℓ=1

𝑛𝐻
. 

 

(5) 

Assessing the model uncertainty, the metrics prediction interval coverage probability (PICP) and interval score (IS) are 

used. PICP in Eq (6) measures how many of the data points are covered by the prediction interval [21]. Let 𝐿𝑡 and 𝑈𝑡 be the 

estimated lower and upper bound of the prediction interval estimated by MC Dropout, then the PICP is defined as 

PICP =
∑ 𝟙𝐻

ℓ=1 {𝑦𝑡+ℓ ∈ [𝐿𝑡+ℓ, 𝑈𝑡+ℓ]}

𝑛𝐻
, (6) 
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 where 𝟙{⋅} = 1 if the condition is true, otherwise it is 0. Although PICP evaluates the percent of data points covered by the 

prediction interval it does not consider the uncertainty of the model (i.e., the width of the interval) in the forecast at the time 

point. IS in Eq (7) assesses how uncertain the model is in the its forecast by considering the width of the interval at any time 

point [22]. If (1-α) ⋅ 100% prediction intervals are constructed where 1 −  𝛼 is the confidence level, then the interval score 

is defined as  

 

ISt+ℓ = (𝑈𝑡+ℓ  − 𝐿𝑡+ℓ) +
2

α
(𝐿𝑡+ℓ − 𝑦𝑡+ℓ)𝟙{𝑦𝑡+ℓ < 𝐿𝑡+ℓ} +

2

α
(𝑦𝑡+ℓ − 𝑈𝑡+ℓ)𝟙{𝑦𝑡+ℓ > 𝑈𝑡+ℓ}. (7) 

 

  Again, 𝟙{⋅} is an indicator variable encoded as 1 if the condition is true, otherwise it is 0, 𝑈𝑡+ℓ and 𝐿𝑡+ℓ are the 

estimated upper and lower bound of the prediction interval at time point 𝑡 + ℓ. The interval score is evaluated at each 

time point, and to assess the interval score for the whole forecast horizon, the summation of ISt+ℓ is divided by 𝑛𝐻, like 

the metrics in Eq. (4) – (6). The three models are evaluated on the whole test set by using rolling origin. The origin of 

the forecast is moved along the time series allowing the model to test on more data without the consequences of 

performing one long forecast from a fixed origin [23]. However, the forecast horizon remains 24 (𝑛𝐻  =  24) hours, and 

therefore the metrics will be divided by 𝑛𝐻 ⋅ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 in the test set. The DL models are trained using MIMO 

meaning that the rolling origin evaluation happens naturally but with the SARIMA model, the origin will be moved by 

concatenating more days onto the training set without re-estimating the coefficients of the model. This means that the 

model will always have the true observed power production as inputs to the model, and not use forecasted values as 

inputs, when performing a forecast. 

 

4. Results and analysis 
 Prior to training the DL models, a grid of values for the Hyperband algorithm needs to be determined and the 

settings for the Hyperband algorithm are presented in Tables 1 and 2. Moreover, the Hyperband algorithm is performed 

by monitoring MSE on the validation data for each set of HPs. The number of hidden layers that the Hyperband algorithm 

will search over is between 1 and 6 with an increment of 1. Similarly, the number of hidden units in each hidden layer 

will vary between 16 and 256 with a step size of 16. Lastly, the learning rate in the optimization algorithm when training 

the networks will test three different values, as presented in Table 1. 

 

Table 1: Defined settings for Hyperband algorithm of AR-net. 

Hyperparameter Values 

Number of hidden layers 1 to 6, with step size = 1 

Number of units in hidden layers 16 to 256 with step size = 16 

Learning rate 0.01, 0.001, 0.0001 

 

 The final model resulted in one single hidden layer with 240 units ReLU as activation function. In connection with 

the hidden layer, a dropout layer is added which is activated when forecasting to enable the model uncertainty to be 

estimated. The HP configuration for hyperband of the LSTM model is presented in Table 2. It uses the same settings as 

the AR-net, with an additional tuning of the number of units in the LSTM layer of the model. The final LSTM model 

resulted in 224 units in the LSTM layer and a single hidden layer with 224 units with ReLU as activation function. 

 

Table 2: Defined settings for Hyperband algorithm of LSTM. 

Hyperparameter Values 

Number of units in LSTM  16 to 256 with step size = 16 

Number of hidden layers 1 to 6, with step size = 1 

Number of units in hidden layers 16 to 256 with step size = 16 

Learning rate 0.01, 0.001, 0.0001 
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 The identified SARIMA model using the algorithm presented in section 2.1 is 𝑆𝐴𝑅𝐼𝑀𝐴(1,1,3)(2,0,0)24. Table 3 

presents the forecasting accuracies of the three models. All three models have similar forecasting accuracy according to MSE 

and MAE. However, the PICP is much higher and IS is lower for the SARIMA model in comparison to the DL models. The 

set confidence levels in the prediction intervals are 95% and the PICP does not correspond to the confidence level for the 

DL models. 
 

Table 3: Model evaluation on the test set. The best results are presented in bold. 

Model MSE MAE PICP IS 

SARIMA 0.08 0.16 0.93 1.89 

AR-net 0.079 0.14 0.27 3.56 

LSTM 0.073 0.14 0.26 3.61 

 
 Fig. 4 presents the forecast of the three models using the moving origin. All three models produce forecasts close to 

the observed production, however, none of the models are not capable of predicting the increased variation during summer 

months. 

 
Fig. 4: Forecast on the test set. Red line corresponds to model forecast and blue line corresponds to observed power production. 

 

  Fig. 5 presents the model performance for every month to further evaluate where the models make erroneous forecasts. 

Once again, all three models perform similarly according to MSE and MAE for each month. However, the SARIMA model 

has larger PICP and lower IS for all months in comparison to the DL models. The largest errors for all models occur during 

the spring (January to March). The smallest errors occur during the summer months and then they increase during fall. The 

pattern of smaller forecasting errors in the summer and increased forecasting errors during spring and fall is similar for all 

three models. 
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Fig. 5: Model performance for each month according to the evaluation metrics 

 
4. Concluding discussion 

 Both AR-net and LSTM show low coverage of 27% and 26% respectively, suggesting that the models are poorly 

calibrated. If the estimated prediction intervals are created with a confidence of 1 − α, then roughly (1-α)% of the data 

points are covered by the prediction interval. If the coverage exceeds the confidence level, then the model is under-

confident, and similarly, if the coverage is smaller than the confidence level it is said that the model is overconfident 

[24, 25]. The three models have similar forecasting accuracy according to MSE and MAE. However, the coverage is 

much smaller than the SARIMA model but also smaller than the given confidence level, suggesting that the DL models 

are overconfident in the forecast. 

 Odensfors power station has water storage capabilities, and the daily power production is manually planned by 

operators. The manual planning of the production poses a challenge when forecasting future power production. In the 

data set, the plan of tomorrow’s production in Odensfors hydropower station is not measured, suggesting that future 

studies may need to explore this variable in more detail to assess whether it improves the accuracy or not. Furthermore, 

local weather conditions affect the water flow. Weather variables such as precipitation, ground moisture, temperatures, 

and evaporation and their interdependencies may be important to include in the model and worth examining in future 

studies. Recent advances in ML-based weather forecasting show promising results of providing accurate weather 

forecasts globally [26]. Utilizing these ML-based weather forecasts could potentially improve the accuracy of the 

production forecasts. 

  An alternative to MC dropout for estimating the model uncertainty is to explore Bayesian neural networks (BNN), 

which are a type of stochastic neural network. The weights in a BNN are assigned to a probability distribution which is 

determined using Bayes’ rule. The uncertainty can then be quantified by doing similar MC estimation as done in this 

study, where several samples from the posterior probability distribution is drawn and the prediction is computed for 

each random sample [27]. Furthermore, BNNs provide regularization in the prior probability distribution to prevent the 

model from overfitting [27]. It is important to emphasize that the performance of a NN is dependent on the choice of 

hyperparameters. Further investigation into HPO may be necessary to further improve the performance of the neural 

networks. In this paper, the length of input sequence, which can be interpreted as a hyperparameter, has been fixed to 

24 hours (i.e., one day of production to forecast the production the next day). Further sensitivity analysis needs to be 

conducted to better understand how the length of input data affects the forecasting accuracy of the models. 

In conclusion, all three models have similar forecasting accuracy according to MSE and MAE. However, the DL 

models are poorly calibrated according to PICP which suggests that additional work on developing the models is required 

to further improve the model performance. 
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