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Abstract - This work proposes a novel approach for short-term load forecasting in urban smart grids using Visibility Graph Attention 
Network (V-GAT). The V-GAT model effectively addresses the complexities of STLF tasks, including non-linearity and the influence 
of diverse factors. V-GAT outperforms established Machine Learning and Deep Learning models in terms of accuracy due to its capability 
to capture intricate data relationships and prioritize informative features. Additionally, V-GAT offers advantages in interpretability and 
computational efficiency. The superior forecasting accuracy and efficiency make V-GAT a valuable tool for smart grid operators to 
optimize power management and grid stability. 
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1. Introduction 
        The traditional power grid is becoming increasingly obsolete, due to growing concerns about technical, economic, and 
environmental issues. The next generation of electric power system is known as the “Smart Grid (SG)”. The global smart 
grid market was reached at almost 50 billion U.S. dollars in 2022 and is expected to grow at a Compound-Annual Growth 
Rate (CAGR) of 17.4 percent until 2028, to hit roughly 130 billion U.S. dollars [1]. Compared to traditional grid, the smart 
grid is expected to allow two-way flows for both electrical power and real-time information and complement the current grid 
system by including renewable energy resources, such as wind, solar, and hydropower [2]. By leveraging the Internet of 
Things (IOT) techniques to collect data, the urban smart grid connects a variety of distributed energy resource assets to the 
power grid and enables effective power management and distribution.  

    Nevertheless, due to the complex and dynamic nature of the urban electricity system, there are still many challenges 
ahead in transforming to the smart grid. Among those, perhaps the greatest challenge is predicting the power grid total load 
(power demand) more accurately and efficiently. In this case, the accuracy of load-forecasting models will have a significant 
impact on many decisions such as planning schedules of utilities, economic scheduling of generating capacity, system 
security assessment, and planning for energy transactions [3]. At the same time, the unpredictability character of renewable 
energy and the urgent need to integrate it into the grid further intensifies the demand for precise power production and load 
forecasting.  

    The power grid load forecasting problem is a challenging task due to its complex, non-linear, and non-stationary 
characters. Hippert et al. [4] have classified load forecast to be short-term (for days), medium-term (for months), and long-
term (for years). Short-term load forecasting (STLF) is currently considered the most crucial in day-to-day operations, unit 
commitment and scheduling, evaluation of grid interchange, and system security analysis. However, high volatility in the 
load curves makes Day-ahead load forecasting in SGs relatively more challenging when compared to longer duration load 
forecast [3].  

    Existing time series forecasting methods encompass a range of approaches, broadly categorized into stochastic 
distribution-based models, Markov chain-based models, Machine Learning (ML)-based models, and Artificial Neural 
Network-based Deep Learning (DL) models. Stochastic and Markov chain-based models often exhibit lower prediction 
accuracy due to their simplifications and assumptions about data dynamics [5], [6]. It’s essential to recognize that 
conventional ML and DL methods, while effective and capable of achieving improved prediction accuracy, have inherent 
limitations. They may struggle with capturing complex temporal dependencies or handling non-linear relationships in the 
data [7]. Additionally, their interpretability may be limited, hindering insights into model decision-making processes [8].  
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          In addressing the challenges of STLF in urban smart grids, this work introduces a novel approach that leverages the 
Visibility Graph (VG) and Graph Attention Networks (GATs). The VG method, recognized for its efficacy in transforming 
nonlinear time series data into graph structures, allows for the intricate dynamics of electricity load data to be analysed in a 
new light. This transformation is instrumental in unveiling the underlying patterns within complex dynamical systems, 
thereby providing a foundation for more accurate forecasting models. Studies such as Lacasa et al. have demonstrated the 
VG's capability in revealing hidden patterns in nonlinear time series, marking a significant advancement in time series 
analysis [9]. The application of VG in various domains, including neuroscience, finance, and meteorology, underscores its 
versatility and effectiveness in handling complex data structures [10] - [12]. 
         Graph Neural Networks (GNNs), and specifically Graph Attention Networks (GATs), have emerged as a breakthrough 
in processing graph-structured data, leveraging attention mechanisms to dynamically prioritize the most relevant parts of the 
graph for specific tasks. However, despite their advantages in model performance, including interpretability and efficiency, 
the application of GATs to VG for regression tasks, particularly in the context of STLF, has been scarcely explored. Our 
work not only addresses this research gap but also demonstrates the effectiveness of this methodology through a case study 
on multivariate load forecasting data from Panama, showcasing superior performance over traditional ML and DL models. 
        This paper's contribution lies in its unique methodology framework that combines the Visibility Graph and Graph 
Attention Network. By transforming the urban smart grid's load forecasting challenge into a graph-based problem, we 
propose a more accurate and faster model. This approach not only addresses the limitations of traditional and current 
nonlinear forecasting models, such as prediction accuracy and computational demands, but also introduces a scalable and 
interpretable solution. The comparative analysis conducted against established ML and DL models like XGBoost, Random 
Forest, LightGBM, Bi-LSTM, and GRU further validates the superiority of our proposed methodology, setting a new 
benchmark for STLF in urban smart grids. 
 
2. Research Framework and Methodology 
        The proposed research framework is meticulously designed to address the intrinsic complexities of urban smart grid 
load forecasting. Given the non-linear and non-stationary nature of load demands, coupled with the multifaceted influences 
of weather conditions and temporal factors, traditional linear models prove inadequate. Consequently, we introduce a novel 
Visibility Graph Attention Network (V-GAT) model framework (see Fig. 1) that encapsulates the dynamism of the urban 
electrical load through a visibility graph approach, integrated with Graph Attention Networks (GATs) for superior predictive 
analytics. 
        The process starts with data collection and preprocessing. This stage serves as the bedrock of our methodology, where 
multivariate time series data is meticulously collected. Variables such as temperature, pressure, humidity, and wind 
characteristics, along with time-related features, are harvested, forming a rich dataset that reflects the complex interplay 
between time, weather conditions and load demands. Preprocessing, including normalization and missing data handling, is 
performed with the intent to homogenize the data scale and ensure the robustness of the model against data imperfections.    
        The application of a sliding window algorithm is a strategic choice, enabling the model to capture temporal 
dependencies and variations in load patterns over different intervals. This temporal segmentation is pivotal, allowing for an 
analysis that is both granular and comprehensive, recognizing the transient yet significant fluctuations inherent in short-term 
load forecasting. The VG construction serves as a transformative step, translating each window of multivariate time series 
into a graph network where each node represents a unique timestamp enriched with a constellation of features and the target 
load value. This representation is not merely a data structure but a reflection of the temporal and feature-based relationships 
that govern the load dynamics, facilitating a nuanced and holistic analysis.    
       Capitalizing on the latest advancements in GNNs, our framework employs Graph Attention Networks (GATs) to 
augment the power of VGs. This integration allows the model to dynamically prioritize and learn from the most influential 
features and temporal relationships, thereby enhancing prediction accuracy. The GATs' attention mechanisms are 
instrumental in discerning the subtle yet critical patterns that traditional models may overlook [13]. The training and 
validation phase is conducted with a rigorous and iterative approach, ensuring the GAT model not only learns the underlying 
patterns of the training dataset but also generalizes effectively to new graph data. Our testing methodology employs a 
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stringent evaluation protocol, utilizing several performance metrics to provide a comprehensive assessment of the model's 
predictive accuracy. This analysis is critical in benchmarking the model against existing forecasting methods. Beyond 
quantitative evaluation, our methodology emphasizes interpretive analysis, where we scrutinize the fluctuation of network 
statistical measures provided by the VGs to better understand the underlying dynamics of the studied systems.  
 

 
Fig. 1: Proposed Model Framework Flowchart 

 
2.1. Visibility Graph for time series  

    The Visibility Graph (VG) is a novel analytical tool that translates a time series into a graph, enabling the application 
of graph theory to investigate the properties of time series data. The mathematical foundation of VG lies in its capacity to 
map a time series 𝑥𝑥(𝑡𝑡𝑖𝑖), into a network of nodes, where each node 𝑣𝑣(𝑡𝑡𝑖𝑖) corresponds to the data point 𝑥𝑥(𝑡𝑡𝑖𝑖) in the time series. 
Two nodes 𝑣𝑣(𝑡𝑡𝑖𝑖) and 𝑣𝑣�𝑡𝑡𝑗𝑗� are connected by an edge if, and only if, at least one straight line can be drawn in the bar chart 
that connects 𝑥𝑥(𝑡𝑡𝑖𝑖) and 𝑥𝑥�𝑡𝑡𝑗𝑗� and does not intersect any intermediate data points. Mathematically, this can be expressed as a 
visibility criterion given by [9]: 

 
                                                      𝑥𝑥(𝑡𝑡𝑘𝑘) <  𝑥𝑥�𝑡𝑡𝑗𝑗� +  [𝑥𝑥(𝑡𝑡𝑖𝑖)  −  𝑥𝑥�𝑡𝑡𝑗𝑗�] 𝑡𝑡𝑗𝑗−𝑡𝑡𝑘𝑘

𝑡𝑡𝑗𝑗−𝑡𝑡𝑖𝑖
                          𝑖𝑖 < 𝑘𝑘 < 𝑗𝑗                        (1) 

 
This criterion ensures that each point in the time series is 'visible' from any other point not obstructed by intermediate data 
points, thus forming a connection in the graph. As shown in Fig. 2, the Visibility Graph (VG) methodology is applied to a 
time series consisting of 13 data points, each represented as a bar (Fig. 2 a). The bars are connected by lines representing the 
visibility from one data point to another. These Lines of Visibility (LoV) ensure that for any two points 𝑥𝑥(𝑡𝑡𝑖𝑖)  and 𝑥𝑥�𝑡𝑡𝑗𝑗� a 
direct line of sight exists if no intermediate data points 𝑥𝑥(𝑡𝑡𝑘𝑘), where i<k<j, obstruct the view. In other words, the line 
connecting 𝑥𝑥(𝑡𝑡𝑖𝑖) and 𝑥𝑥�𝑡𝑡𝑗𝑗� must not intersect any bars between them. 
       The resultant undirected VG network (Fig. 2 b) translates these relationships into a graph structure where nodes represent 
the time points and edges represent the visibility between them. In this network, the nodes are laid out in a manner that 
preserves the temporal sequence, with the edges illustrating the direct visibility between nodes. The VG thus provides an 
innovative means of analyzing the structure within a time series by leveraging the principles of graph theory. This approach 
facilitates the understanding of the intrinsic properties of the data, such as its periodicity and trends, and can also enhance 
the detection of hidden patterns that are not readily apparent in the raw time series itself [14]. 
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Fig. 2: An example of Visibility Graph a). a random 13 data-points time series in the form of bar chart and corresponding Lines 

of Visibility (LoV, black lines) of each data-point. b). Associated undirected VG  
 

        The selection of VG as the network tool for our study on multivariate load prediction is strategic. The inherent 
complexity of load time series, influenced by various factors, exhibits nonlinearity and non-stationarity. VG stands out as it 
does not presuppose linearity or stationarity, enabling it to capture the complex interdependencies and dynamic changes 
within the time series data [15]. Moreover, the application of VG in our study extends beyond mere representation; it serves 
as a precursor to employing advanced machine learning techniques, such as GAT. The graph topological structure provided 
by VG facilitates the use of GAT, which can exploit the intricate relationships between time points to enhance the accuracy 
of load forecasting.  
 
2.2. Graph Attention Network 
       Graph Attention Networks (GATs) are a class of neural network architectures that operate on graph-structured data. At 
the core of GATs is the attention mechanism, which assigns varying levels of significance to nodes within the graph, allowing 
for the nuanced aggregation of features from neighbors. Introduced by [13], GATs address the challenge of learning from 
data that is not naturally represented in a Euclidean space but rather in the form of a graph, such as social networks, molecular 
structures, and in our case, visibility graphs derived from time series data. 
       The attention mechanism in GATs is computationally analogous to the intuitive process of focusing on the most 
informative parts of data. For each node, the GAT layer computes attention coefficients that reflect the importance of 
neighboring nodes' features. These coefficients are learned during training and are used to weigh the neighbors' features 
accordingly before summing them up. This operation results in new feature representations that are not only a function of 
neighboring nodes but are also contextually adjusted based on the overall graph structure [16]. 
       In the context of visibility graphs converted from multivariate time series, GATs provide a powerful tool for capturing 
the relational dependencies that are inherently temporal and contextual. Each node in the visibility graph encompasses the 
features of the time series at a given timestamp, and the attention mechanism allows the GAT to prioritize which historical 
data points (nodes) are most relevant for predicting future load values [17]. This is particularly beneficial for load forecasting, 
where past conditions and patterns can have varying degrees of influence on future load values. By incorporating GATs into 
our visibility graph-based framework, we enhance the model's ability to learn complex, non-linear dependencies 
characteristic of load time series, ultimately improving forecasting accuracy and reliability.  
 
3. Short-term Load Forecasting Case Study 
2.1. Data Source for the Case Study 
      The case study we chose, focused on Panama's power system, meticulously compiles a detailed dataset spanning from 
January 2015 to June 2020. This dataset, comprising 48,048 data points, provides a comprehensive view of the power 
system's demand and environmental influences [18]. The load forecasting challenge in Panama is emblematic of the broader 
issues facing power systems globally [19]. The country's electricity demand has been on an upward trajectory, propelled by 



 
 

 
 

 
 

 
ICERT 111-5 

demographic growth and economic development [20]. The data collected provide an invaluable resource for examining these 
trends, as they encompass not just the raw electricity demand but also contextual factors like holidays, school cycles, and 
weather conditions (see Table 1), all of which influence the load on the power grid. 

 
Table 1: Description of original variables in the dataset 

Category Variable Description Data Type (Unit) 
Time 

Features 
datetime Date and time recorded in every hour  Time Stamp  

Holiday_ID Different National Holidays Categorical 
holiday Holiday indicator Binary 
school School day indicator Binary 

Weather 
Features 

T2Mc Air temperature at 2 meters Numerical (oC) 
QV2Mc Relative humidity at 2 meters Numerical (%) 
TQLc Liquid precipitation Numerical (L/m2) 
W2Mc Wind Speed at 2 meters Numerical (m/s) 

Target  nat_demand National electricity load Numerical (MWh) 
                                       c Sub-index stands for city, meaning that these variables are available for David, Santiago, and Panama City. 

 
2.2. Data Pre-processing 
     The raw data underwent meticulous preprocessing to prepare it for the model training. To capture the inherent seasonality 
and daily consumption patterns within the dataset, we extracted new time features from the existing ‘datetime’ variable. 
These features included ‘Year’, ‘Month’, ‘day of the month’, ‘day of the week’, ‘hour of the day’, and ‘weekend indicator’. 
Beyond that, we also incorporated several new load features (see Table 2). The existing weather features (T2M, QV2M, 
TQL, W2M) represent various weather metrics like temperature, humidity, precipitation, and wind speed. However, these 
features are measured on different scales. To ensure all features contribute equally during model training, a normalization 
step was applied. This process transformed each weather feature into a value between 0 and 1, eliminating the influence of 
the original measurement scales. 

 The model aims to predict the electricity load 24 hours ahead of the current time step (t+24 hours). Therefore, the target 
variable represents the forecasted load value at this future time horizon. We ensured the target variable was converted to a 
floating-point data type for compatibility with the machine learning model. There are no missing values on the datasets. Only 
a few low values on the load were detected due to hourly blackouts and damage in the power grid, but all records were kept.  
 

Table 2: Description of training variables of the forecasting models 
Variable Future load 

Forecasts 
(Target) 

Current and 
Previous Load 

Values 

Average 
Load 

Values 

Weather 
Features 

Time Features 

Description Predicted 
load value 

24h 
ahead of 
current 
time t 

Load values at 
current time t, 24 h 

before current time t, 
and 1 week before 

current time t 

Average of 
load values 
measured 
during the 
last 24h 

Weather 
related 

values at 22, 
23 and 24h 

ahead of 
current time t 

Year, Month, day of the 
month, day of the week, 
hour of the day, weekend 

indicator, datetime, 
Holiday_ID, holiday, school 
(24h ahead of current time t) 

 
2.2. Model Training and Testing 

   The efficacy of various forecasting models for short-term load prediction is evaluated. We compare the performance of 
the proposed V-GAT model against established ML and DL architectures. This study employs three advanced ML models 
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XGBoost, Random Forest and LightGBM, which are known for their prowess in regression tasks. Most of the important 
model parameters are fine-tuned in our study.   

   Two DL models, Bi-directional Long Short-Term Memory (Bi-LSTM) and Gated Recurrent Unit (GRU), which are 
proficient at learning temporal dependencies within sequential data are included. To provide valuable context for 
predicting future load, a 24-time-step lagged load feature is incorporated as input for the Bi-LSTM and GRU models.   

   The V-GAT model leverages a sliding window approach with a window size of 24. This segments the data into 
consecutive 24-hour chunks. Each chunk is then transformed into a visibility graph (VG), capturing the relationships 
between data points within that window. The VG representation is subsequently fed into a GAT model for training. The 
GAT is adept at prioritizing informative features and relationships within the VGs, ultimately enhancing the model's 
capacity to predict future load values. The data that fit into our models undergoes a chronological split for training (70%) 
and testing (30%) purposes. This ensures the model is trained on historical data and evaluated on unseen data from the 
future, mimicking real-world forecasting scenarios.  

 
4. Results and Discussion 

  Two primary metrics were used to evaluate the performance of the short-term load forecasting models: Root Mean 
Squared Error (RMSE) and Mean Squared Error (MSE). Lower RMSE and MSE values indicate better forecasting 
accuracy, signifying a model's capacity to predict future load values that are closer to the actual observed values. The 
dataset also includes an official 'Pre-dispatch Forecast' value, which is also used here for comparison. Additionally, the 
computational time required by each model for processing the testing data was recorded.  

  As can be observed in Table 3, the V-GAT model achieved the superior performance across both evaluation metrics. 
The V-GAT model produced the lowest RMSE value and the lowest average MSE value compared to other forecasting 
models. This indicates that the V-GAT model consistently produced forecasts that were closer to the actual load values, 
on average, compared to the other models. This can be attributed to the V-GAT model's ability to capture the complex 
interdependencies within the data through visibility graphs and selectively learn from the most influential features and 
relationships via the GAT mechanism. Moreover, the V-GAT model not only leads in forecasting accuracy but also 
demonstrates significant computational efficiency, boasting the second-fastest testing time among the models evaluated. 
Such efficiency, paired with its predictive precision, underscores the V-GAT model's potential as a robust and agile 
solution for short-term load forecasting within SG systems. 
 

Table 3: Results of Models for short-term load forecasting    
Metrics 

                                 
Models 

Pre-
dispatch 
Forecast 

Xgboost Random 
Forest LightGBM Bi-

LSTM GRU V-GAT 

RMSE 80.38 53.43 58.73 53.86 33.65 38.94 29.52 
MSE 6460.77 2854.75 3448.9 2901.31 1132.21 1516.06 871.71 

Testing Time (s) - 0.56 2.28 0.38 1.08 0.64 0.51 
 

These two plots in Fig. 3 compare the actual load (blue line) to the predicted load (orange line) generated by the V-
GAT model for a sample 24-hour period on a weekday (a) and weekend (b). The plots reveal a high degree of 
correspondence between the predicted and actual load values across both weekdays and weekends, indicating the V-GAT 
model's effectiveness in capturing the underlying trends and temporal patterns of electricity load. 
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Fig. 3: Actual Load versus V-GAT model forecasting for weekday a) and weekend b) 

 
Fig. 4.a delineates the load dynamics, illustrating the temporal flow of electrical demand with marked peaks and troughs. 

In parallel, Fig. 4.b encapsulates the clustering coefficient, a pivotal graph-theoretic metric derived from the visibility 
graph—a transformative representation of the multivariate load time series data with a 24-hour moving window. The 
clustering coefficient, a measure of the degree to which nodes in a graph tend to cluster together, indicates a probability of 
nodes to be interconnected [21]. Interestingly, the temporal evolution of the clustering coefficient exhibits a dance with the 
load values, at times mirroring the load’s fluctuations. This dynamic suggests a deeper, nonlinear interplay between the load 
demand and the VG network's structure. Such graph network statistical measures provide a multifaceted perspective of the 
load system's behavior, unveiling patterns and dependencies that might be obscured in traditional analyses. Thus, they enrich 
the proposed model's interpretability, yielding a more nuanced understanding of the underlying system dynamics and 
bolstering the forecasting model's predictive prowess. 

 

 
Fig. 4: Comparative Dynamics of Load and Network Structure during the First Week of February 2016. (a) Load Dynamics 

Over Time. (b) Clustering Coefficient Over Time. 
 

5. Conclusion 
This work presented a novel approach for STLF in urban smart grids, leveraging the transformative power of VGs and 

GATs. The proposed V-GAT model effectively addresses the inherent complexities of load forecasting tasks, including non-
linearity, non-stationarity, and the influence of diverse factors like weather and temporal patterns. 

The V-GAT framework outperformed established ML and DL models like XGBoost, Random Forest, LightGBM, Bi-
LSTM, and GRU in terms of prediction accuracy. This superior performance is attributed to V-GAT's capability to capture 
intricate relationships within the data through VGs and prioritize informative features and dependencies using the GAT 
mechanism. Furthermore, V-GAT offers advantages in computational efficiency and interpretability compared to traditional 
DL models. The model's efficiency in processing STLF data makes it suitable for real-time applications within smart grids. 

In conclusion, the V-GAT model presents a valuable tool for smart grid operators. Its superior forecasting accuracy and 
short computational time making it a valuable tool for grid operators to optimize power generation, distribution, and maintain 
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grid system stability, ultimately contributing to a more reliable and efficient SG infrastructure. Future research can 
explore incorporating additional features or optimizing the V-GAT architecture for even better performance. 
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