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Abstract - This paper introduces a novel parameter and mechanical disturbance estimator for a permanent magnet synchronous motor. 
The estimator, based on the algebraic estimation method, accounts for the temporal variation of most parameters and the non-constancy 
of load torque. The primary objective is to integrate the estimated parameters into a controller to track trajectories for regulating the direct 
axis current and motor angular velocity. This integration enhances the robustness of the controller against parametric variations and 
unmodeled mechanical dynamics. Computational simulations are conducted to validate the performance of both the controller and the 
designed estimator. 
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1. Introduction 

 Due to climate change, there is a trend towards replacing conventional transportation powered by internal combustion 
engines with electric motors. Electric motors offer benefits over internal combustion engines, such as reduced emissions of 
polluting gases, higher efficiency, and lower maintenance costs [1]. Among the most commonly used electric motors for this 
purpose is the Permanent Magnet Synchronous Motor (PMSM), replacing the induction motor in this field [2]. Several 
studies have applied the PMSM as the driving source for electric vehicles (EVs), as shown in [3], where a fuzzy controller 
with sliding modes is proposed to regulate the speed of the PMSM. In [4], a braking torque limit is suggested to improve the 
regenerative braking of the EV. [5] proposes replacing the mechanical differential, commonly used in various types of 
vehicles, with a differential based on the use of PMSM. Adopting this motor for EV is not a new topic but remains highly 
relevant for transportation improvements. 

Ideally, all dynamic systems possess constant parameters that do not change during their operation, simplifying both 
their analysis and control. However, when this ideal scenario does not materialize, complications arise. One way to address 
this situation is by using estimation techniques to approximate system parameters [6]. In the case of PMSMs, there are 
various studies where parameter estimation is addressed. For example, in [7], the Recursive Least Squares technique is 
employed to identify parameters and faults of the PMSM coupled to a transmission. Another estimation technique for 
PMSMs is the Affine Projection Algorithm, as demonstrated in [8], where this technique is simulated and implemented. 
Additionally, the Extended Kalman Filter has been proposed as an effective parameter estimation technique, as outlined in 
[9], where parameter estimation of the motor including the estimation of a constant load torque is performed. 

An important challenge faced by some parameter estimation techniques is the difficulty in guaranteeing accurate and 
real-time estimation. As an alternative to the techniques mentioned above, the Algebraic Parameter Estimation stands out, 
as presented in [10]. This technique has been applied to other types of electric motors, as demonstrated in [11], where 
parameters and variable load torque are estimated in a DC Shunt motor. In the case of the PMSM, Algebraic Estimation was 
used in [12], where it was experimentally performed in one of the examples included. Another case in which this method is 
applied is in [13], where the estimation of the electric and mechanical parameters of the motor is detailed, including the 

mailto:fbeltran@azc.uam.mx
mailto:romy@azc.uam.mx
mailto:jcasa@ujaen.es


 
 

 
 

 
 

 
ICERT 123-2 

constant load torque, in addition to implementing a method restart to detect parameter variations. In [14], only the 
estimation of variable load torque using Algebraic Estimation is presented.   

This article introduces a design for parameter and variable load torque estimation in a PMSM using Algebraic 
Estimation. It assumes most parameters vary, except for the number of pole pairs. Additionally, the load torque is 
approximated as a polynomial function over small time intervals. The design includes closed-loop estimation by 
developing a dual-component controller for tracking trajectories in the direct axis current and motor angular velocity. 
2. Parameters estimation and variable torque 

The following equations represent the dynamic model of a PMSM in the d-q reference frame: 
 

𝐿𝐿𝑑𝑑
𝑑𝑑𝑖𝑖𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑅𝑅𝑠𝑠𝑖𝑖𝑑𝑑 − 𝐿𝐿𝑞𝑞𝑛𝑛𝑝𝑝𝑖𝑖𝑞𝑞𝜔𝜔 = 𝑢𝑢𝑑𝑑 (1) 

𝐿𝐿𝑞𝑞
𝑑𝑑𝑖𝑖𝑞𝑞
𝑑𝑑𝑑𝑑

+ 𝑅𝑅𝑠𝑠𝑖𝑖𝑞𝑞 + 𝐿𝐿𝑑𝑑𝑛𝑛𝑝𝑝𝑖𝑖𝑑𝑑𝜔𝜔 + 𝑛𝑛𝑝𝑝𝜆𝜆𝑚𝑚𝜔𝜔 = 𝑢𝑢𝑞𝑞 (2) 

𝐽𝐽
𝑑𝑑𝜔𝜔
𝑑𝑑𝑑𝑑

+ 𝑏𝑏𝜔𝜔 + 𝜏𝜏𝐿𝐿 =
3𝑛𝑛𝑝𝑝

2
�𝜆𝜆𝑚𝑚𝑖𝑖𝑞𝑞 + �𝐿𝐿𝑑𝑑 − 𝐿𝐿𝑞𝑞�𝑖𝑖𝑑𝑑𝑖𝑖𝑞𝑞� (3) 

 
where 𝐿𝐿𝑑𝑑 and 𝐿𝐿𝑞𝑞 are the direct and quadrature axis inductances, respectively, 𝑅𝑅𝑠𝑠 is the stator resistance, 𝑛𝑛𝑝𝑝 is the number of 
pole pairs, 𝜆𝜆𝑚𝑚 is the magnetic flux of the permanent magnet, 𝐽𝐽 and 𝑏𝑏 are the moment of inertia and viscous damping factor 
respectively, and 𝜏𝜏𝐿𝐿 is the load torque applied to the motor. The motor state variables are 𝑖𝑖𝑑𝑑 and 𝑖𝑖𝑞𝑞, representing the direct 
and quadrature axis currents respectively, and 𝜔𝜔, which is the motor angular velocity. The control inputs are 𝑢𝑢𝑑𝑑 for the direct 
axis and 𝑢𝑢𝑞𝑞 for the quadrature axis [15]. 
2.1. Estimation of electrical parameters 

Firstly, considering the electrical subsystem of the PMSM with unknown parameters Eqs. (1)—(2). It is established 
that the only parameter that cannot vary over time and is known in advance is the number of pole pairs 𝑛𝑛𝑝𝑝. To eliminate 
dependence on the system's initial conditions, both expressions are multiplied by 𝑑𝑑 − 𝑑𝑑𝑖𝑖, where 𝑑𝑑 is the independent time 
variable and 𝑑𝑑𝑖𝑖 is the initial estimation time. The resulting expressions are integrated with respect to time. 
 

𝐿𝐿𝑑𝑑 �Δ𝑖𝑖𝑑𝑑 − � 𝑖𝑖𝑑𝑑
𝑡𝑡

𝑡𝑡𝑖𝑖
 𝑑𝑑𝑑𝑑� + 𝑅𝑅𝑠𝑠 � Δ𝑖𝑖𝑑𝑑

𝑡𝑡

𝑡𝑡𝑖𝑖
 𝑑𝑑𝑑𝑑 − 𝐿𝐿𝑞𝑞𝑛𝑛𝑝𝑝 � Δ𝑖𝑖𝑞𝑞𝜔𝜔

𝑡𝑡

𝑡𝑡𝑖𝑖
𝑑𝑑𝑑𝑑 = � Δ𝑢𝑢𝑑𝑑

𝑡𝑡

𝑡𝑡𝑖𝑖
 𝑑𝑑𝑑𝑑 (4) 

𝐿𝐿𝑞𝑞 �Δ𝑖𝑖𝑞𝑞 − � 𝑖𝑖𝑞𝑞
𝑡𝑡

𝑡𝑡𝑖𝑖
 𝑑𝑑𝑑𝑑� + 𝑅𝑅𝑠𝑠 � Δ𝑖𝑖𝑞𝑞

𝑡𝑡

𝑡𝑡𝑖𝑖
𝑑𝑑𝑑𝑑 + 𝐿𝐿𝑑𝑑𝑛𝑛𝑝𝑝 � Δ𝑖𝑖𝑑𝑑𝜔𝜔

𝑡𝑡

𝑡𝑡𝑖𝑖
𝑑𝑑𝑑𝑑 + 𝑛𝑛𝑝𝑝𝜆𝜆𝑚𝑚 � Δ𝜔𝜔

𝑡𝑡

𝑡𝑡𝑖𝑖
𝑑𝑑𝑑𝑑 = � Δ𝑢𝑢𝑞𝑞

𝑡𝑡

𝑡𝑡𝑖𝑖
𝑑𝑑𝑑𝑑 (5) 

 
Inspecting the previous expressions, it is seen that there are more unknowns than equations. To solve this problem, 

Eq. (4) is integrated with respect to time twice to obtain the appropriate number of equations to solve a linear system. In 
the case of Eq. (5), the integration with respect to time is done three more times. With this action, the following linear 
equation systems are obtained 

 
𝐴𝐴𝑑𝑑𝜃𝜃𝑑𝑑 = 𝐵𝐵𝑑𝑑, (6) 

 
where 𝜃𝜃𝑑𝑑  =  �𝐿𝐿𝑑𝑑 , 𝑅𝑅𝑠𝑠, 𝐿𝐿𝑞𝑞𝑛𝑛𝑝𝑝�

𝑇𝑇 and the elements of the matrices 𝐴𝐴𝑑𝑑 and 𝐵𝐵𝑑𝑑 are 
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𝑎𝑎11,𝑑𝑑 = Δ𝑖𝑖𝑑𝑑 − � 𝑖𝑖𝑑𝑑
𝑑𝑑

𝑑𝑑𝑖𝑖
 𝑑𝑑𝑑𝑑, 𝑎𝑎12,𝑑𝑑 = � Δ𝑖𝑖𝑑𝑑

𝑑𝑑

𝑑𝑑𝑖𝑖
 𝑑𝑑𝑑𝑑,      𝑎𝑎13,𝑑𝑑 = � Δ𝑖𝑖𝑞𝑞𝜔𝜔

𝑑𝑑

𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑,   

𝑏𝑏1,𝑑𝑑 = � Δ𝑢𝑢𝑑𝑑
𝑑𝑑

𝑑𝑑𝑖𝑖
 𝑑𝑑𝑑𝑑,     𝑎𝑎(𝑖𝑖,𝑗𝑗),𝑑𝑑 = � 𝑎𝑎(𝑖𝑖−1,𝑗𝑗),𝑑𝑑 𝑑𝑑𝑑𝑑

𝑡𝑡

𝑡𝑡𝑖𝑖
, 𝑏𝑏𝑖𝑖,𝑑𝑑 = � 𝑏𝑏𝑖𝑖−1,𝑑𝑑 𝑑𝑑𝑑𝑑

𝑡𝑡

𝑡𝑡𝑖𝑖
.

 

 
with 𝑖𝑖 = 2, 3 and 𝑗𝑗 = 1, 2, 3. In the case of the quadrature axis equation, its system of equations is 

 
𝐴𝐴𝑞𝑞𝜃𝜃𝑞𝑞 = 𝐵𝐵𝑞𝑞 (7) 

 
where 𝜃𝜃𝑞𝑞  =  �𝐿𝐿𝑞𝑞 , 𝑅𝑅𝑠𝑠, 𝐿𝐿𝑑𝑑𝑛𝑛𝑝𝑝, 𝑛𝑛𝑝𝑝𝜆𝜆𝑚𝑚�

𝑇𝑇 and the elements of the matrices 𝐴𝐴𝑞𝑞 and 𝐵𝐵𝑞𝑞 are 
 

𝑎𝑎11,𝑞𝑞 = Δ𝑖𝑖𝑞𝑞 − � 𝑖𝑖𝑞𝑞
𝑡𝑡

𝑡𝑡𝑖𝑖
 𝑑𝑑𝑑𝑑, 𝑎𝑎12,𝑞𝑞 = � Δ𝑖𝑖𝑞𝑞

𝑡𝑡

𝑡𝑡𝑖𝑖
𝑑𝑑𝑑𝑑, 𝑎𝑎13,𝑞𝑞 = � Δ𝑖𝑖𝑑𝑑𝜔𝜔

𝑡𝑡

𝑡𝑡𝑖𝑖
𝑑𝑑𝑑𝑑, 𝑎𝑎14,𝑞𝑞 = � Δ𝜔𝜔

𝑡𝑡

𝑡𝑡𝑖𝑖
𝑑𝑑𝑑𝑑,

𝑏𝑏1,𝑞𝑞 = � Δ𝑢𝑢𝑞𝑞
𝑡𝑡

𝑡𝑡𝑖𝑖
𝑑𝑑𝑑𝑑, 𝑎𝑎(𝑖𝑖,𝑗𝑗),𝑞𝑞 = � 𝑎𝑎(𝑖𝑖−1,𝑗𝑗),𝑞𝑞 𝑑𝑑𝑑𝑑

𝑑𝑑

𝑑𝑑𝑖𝑖
, 𝑏𝑏𝑖𝑖,𝑞𝑞 = � 𝑏𝑏𝑖𝑖−1,𝑞𝑞 𝑑𝑑𝑑𝑑

𝑑𝑑

𝑑𝑑𝑖𝑖
.

 

 
with 𝑖𝑖 = 2, 3, 4 and 𝑗𝑗 = 1, 2, 3, 4. Cramer's rule is proposed to solve Eqs. (6)—(7), leading to the following expressions. 

 

𝐿𝐿�𝑑𝑑 =
∫ 𝑒𝑒−𝛾𝛾Δ�Λ𝑑𝑑,1� 𝑑𝑑𝑑𝑑
𝑡𝑡
𝑡𝑡𝑖𝑖

∫ 𝑒𝑒−𝛾𝛾Δ|Λ𝑑𝑑| 𝑑𝑑𝑑𝑑𝑡𝑡
𝑡𝑡𝑖𝑖

,    𝑅𝑅�𝑠𝑠 =
∫ 𝑒𝑒−𝛾𝛾Δ�Λ𝑑𝑑,2� 𝑑𝑑𝑑𝑑
𝑡𝑡
𝑡𝑡𝑖𝑖

∫ 𝑒𝑒−𝛾𝛾Δ|Λ𝑑𝑑| 𝑑𝑑𝑑𝑑𝑡𝑡
𝑡𝑡𝑖𝑖

,  𝐿𝐿�𝑞𝑞 =
∫ 𝑒𝑒−𝛾𝛾Δ�Λ𝑞𝑞,1� 𝑑𝑑𝑑𝑑
𝑡𝑡
𝑡𝑡𝑖𝑖

∫ 𝑒𝑒−𝛾𝛾Δ�Λ𝑞𝑞� 𝑑𝑑𝑑𝑑
𝑡𝑡
𝑡𝑡𝑖𝑖

,   �̂�𝜆𝑚𝑚 =
∫ 𝑒𝑒−𝛾𝛾Δ�Λ𝑞𝑞,4� 𝑑𝑑𝑑𝑑
𝑡𝑡
𝑡𝑡𝑖𝑖

∫ 𝑒𝑒−𝛾𝛾Δ�Λ𝑞𝑞� 𝑑𝑑𝑑𝑑
𝑡𝑡
𝑡𝑡𝑖𝑖

, (8) 

 
Where Λ𝑘𝑘 = det(𝐴𝐴𝑘𝑘), 𝑘𝑘 = 𝑑𝑑, 𝑞𝑞, and Λ𝑘𝑘,𝑚𝑚 are the modified matrices to apply Cramer's rule. The absolute value of the 

determinants is integrated to avoid potential singularities when the function Λ𝑘𝑘 crosses zero. On the other hand, multiplying 
the absolute value of the determinants by 𝑒𝑒−𝛾𝛾(𝑡𝑡−𝑡𝑡𝑖𝑖) serves as a filter and helps the result converge quicker as long as 𝛾𝛾 is 
positive. 
2.1. Estimation of mechanical parameters and load torque 

For the mechanical subsystem, it must first be considered that the variable load torque can be locally approximated in a 
small time interval as an nth-order Taylor polynomial of the form 

 

𝜏𝜏𝐿𝐿 ≈ �𝑝𝑝𝑘𝑘(𝑑𝑑 − 𝑑𝑑𝑖𝑖)𝑘𝑘 .
𝑛𝑛

𝑘𝑘=0

 (9) 

 
Replacing Eq. (9) into Eq. (3), along with considering that 𝐿𝐿𝑞𝑞  =  𝐿𝐿𝑑𝑑, and following the same procedure used for 

Algebraic Estimation presented in the electrical subsystem, we obtain 
 

𝐽𝐽 �Δω −� 𝜔𝜔
𝑡𝑡

𝑡𝑡𝑖𝑖
 𝑑𝑑𝑑𝑑� + 𝑏𝑏� Δ𝜔𝜔

𝑡𝑡

𝑡𝑡𝑖𝑖
 𝑑𝑑𝑑𝑑 + �𝑝𝑝𝑘𝑘 � (𝑑𝑑 − 𝑑𝑑𝑖𝑖)𝑘𝑘+1

𝑡𝑡

𝑡𝑡𝑖𝑖

𝑛𝑛

𝑘𝑘=0

=
3𝑛𝑛𝑝𝑝𝜆𝜆𝑚𝑚

2
� Δ𝑖𝑖𝑞𝑞
𝑡𝑡

𝑡𝑡𝑖𝑖
 𝑑𝑑𝑑𝑑. (10) 

 
The size of the equation system required for estimation depends on the order of the Taylor polynomial used. Hence, a 

general form of this system is: 
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⎣
⎢
⎢
⎢
⎡
𝑎𝑎11,𝑚𝑚 𝑎𝑎12,𝑚𝑚 𝑎𝑎13,𝑚𝑚 ⋯ 𝑎𝑎1,𝑛𝑛+3,𝑚𝑚
𝑎𝑎21,𝑚𝑚 𝑎𝑎22,𝑚𝑚 𝑎𝑎23,𝑚𝑚 ⋯ 𝑎𝑎2,𝑛𝑛+3,𝑚𝑚
𝑎𝑎31,𝑚𝑚 𝑎𝑎32,𝑚𝑚 𝑎𝑎33,𝑚𝑚 ⋯ 𝑎𝑎3,𝑛𝑛+3,𝑚𝑚
⋮ ⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑛𝑛+3,1,𝑚𝑚 𝑎𝑎𝑛𝑛+3,2,𝑚𝑚 𝑎𝑎𝑛𝑛+3,3,𝑚𝑚 ⋯ 𝑎𝑎𝑛𝑛+3,𝑛𝑛+3,𝑚𝑚⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝐽𝐽
𝑏𝑏
𝑝𝑝0
⋮
𝑝𝑝𝑛𝑛⎦
⎥
⎥
⎥
⎤

=
3𝑛𝑛𝑝𝑝�̂�𝜆𝑚𝑚

2

⎣
⎢
⎢
⎢
⎡
𝑏𝑏1,𝑚𝑚
𝑏𝑏2,𝑚𝑚
𝑏𝑏3,𝑚𝑚
⋮

𝑏𝑏𝑛𝑛+3,𝑚𝑚⎦
⎥
⎥
⎥
⎤

. (11) 

 
The mechanical parameters and the coefficients of the Taylor polynomial are calculated using the following 

expressions: 
 

𝐽𝐽 =
3𝑛𝑛𝑝𝑝�̂�𝜆𝑚𝑚

2
∫ 𝑒𝑒−𝛾𝛾Δ�Λ𝑚𝑚,1� 𝑑𝑑𝑑𝑑
𝑡𝑡
𝑡𝑡𝑖𝑖

∫ 𝑒𝑒−𝛾𝛾Δ|Λ𝑚𝑚| 𝑑𝑑𝑑𝑑𝑡𝑡
𝑡𝑡𝑖𝑖

,                                     𝑏𝑏� =
3𝑛𝑛𝑝𝑝�̂�𝜆𝑚𝑚

2
∫ 𝑒𝑒−𝛾𝛾Δ�Λ𝑚𝑚,2� 𝑑𝑑𝑑𝑑
𝑡𝑡
𝑡𝑡𝑖𝑖

∫ 𝑒𝑒−𝛾𝛾Δ|Λ𝑚𝑚| 𝑑𝑑𝑑𝑑𝑡𝑡
𝑡𝑡𝑖𝑖

,

�̂�𝑝𝑘𝑘 =
3𝑛𝑛𝑝𝑝�̂�𝜆𝑚𝑚

2
𝑠𝑠𝑠𝑠𝑛𝑛(Λ𝑚𝑚,𝑘𝑘+3)
𝑠𝑠𝑠𝑠𝑛𝑛(Λ𝑚𝑚)

∫ 𝑒𝑒−𝛾𝛾Δ�Λ𝑚𝑚,1� 𝑑𝑑𝑑𝑑
𝑡𝑡
𝑡𝑡𝑖𝑖

∫ 𝑒𝑒−𝛾𝛾Δ|Λ𝑚𝑚| 𝑑𝑑𝑑𝑑𝑡𝑡
𝑡𝑡𝑖𝑖

,             𝑠𝑠𝑠𝑠𝑛𝑛(𝛽𝛽) = �    1,         𝛽𝛽 ≥ 0
−1,         𝛽𝛽 < 0.                       

 (12) 

 
The function 𝑠𝑠𝑠𝑠𝑛𝑛 determines the sign change of the coefficients 𝑝𝑝𝑘𝑘.       

     
3. Controller design for PMSM 

To test the closed-loop estimation, a Proportional-Integral (PI) controller, is proposed to regulate the direct axis 
current 𝑖𝑖𝑑𝑑. The controller development starts with the first expression of the dynamic model, Eq. (1). An auxiliary 
variable𝑣𝑣𝑑𝑑, is introduced to facilitate the development and is defined as:  

 

𝑣𝑣𝑑𝑑 =
𝑑𝑑𝑖𝑖𝑑𝑑
𝑑𝑑𝑑𝑑

= −
𝑅𝑅𝑠𝑠
𝐿𝐿𝑑𝑑
𝑖𝑖𝑑𝑑 +

𝐿𝐿𝑞𝑞𝑛𝑛𝑝𝑝
𝐿𝐿𝑑𝑑

𝑖𝑖𝑞𝑞ω +
1
𝐿𝐿𝑑𝑑
𝑢𝑢𝑑𝑑 (13) 

 
The PI controller is proposed as: 
 

𝑣𝑣𝑑𝑑 = −𝑘𝑘𝑝𝑝,𝑑𝑑𝑒𝑒𝑑𝑑 − 𝑘𝑘𝑖𝑖,𝑑𝑑 � 𝑒𝑒𝑑𝑑  𝑑𝑑𝑑𝑑
𝑡𝑡

0
,                    𝑒𝑒𝑑𝑑 = 𝑖𝑖𝑑𝑑 − 𝑖𝑖𝑑𝑑∗ , (14) 

 
Here, 𝑖𝑖𝑑𝑑∗ = 0.1 sin(2𝑑𝑑) is the current trajectory for the direct axis, and 𝑒𝑒𝑑𝑑 is the tracking error. To simplify the 

controller's second part, 𝑖𝑖𝑑𝑑∗  is proposed to be close to zero and non-constant to facilitate the system's parameter estimation 
while disregarding it later. Now, differentiating Eq. (14), we get: 

 
𝑑𝑑2𝑒𝑒𝑑𝑑
𝑑𝑑𝑑𝑑2

+ 𝑘𝑘𝑝𝑝,𝑑𝑑
𝑑𝑑𝑒𝑒𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑘𝑘𝑖𝑖,𝑑𝑑𝑒𝑒𝑑𝑑 = 0 (15) 

 
To tune the controller gains, a second-order reference system for the closed-loop error dynamics 𝑒𝑒𝑑𝑑 is chosen as: 

𝑑𝑑2𝑒𝑒𝑑𝑑
𝑑𝑑𝑑𝑑2

+ 2ω𝑛𝑛ζ
𝑑𝑑𝑒𝑒𝑑𝑑
𝑑𝑑𝑑𝑑

+ ω𝑛𝑛
2𝑒𝑒𝑑𝑑 = 0 (16) 

 
By comparing Eqs. (15) and (16), the controller gains are determined, ensuring stability when 𝜔𝜔𝑛𝑛, 𝜁𝜁 > 0. Thus, the 

control input for the direct axis is: 
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𝑢𝑢𝑑𝑑 = 𝐿𝐿𝑑𝑑𝑣𝑣𝑑𝑑 + 𝑅𝑅𝑠𝑠𝑖𝑖𝑑𝑑 − 𝐿𝐿𝑞𝑞𝑛𝑛𝑝𝑝𝑖𝑖𝑞𝑞𝜔𝜔 (17) 
 
Continuing with developing the angular speed controller 𝜔𝜔, a Proportional-Integral-Derivative (PID) controller is 

proposed. Starting from Eq. (3), differentiating with respect to time yields: 
 

𝑑𝑑2𝜔𝜔
𝑑𝑑𝑑𝑑2

=
3𝑛𝑛𝑝𝑝𝜆𝜆𝑚𝑚

2𝐽𝐽
𝑑𝑑𝑖𝑖𝑞𝑞
𝑑𝑑𝑑𝑑

−
𝑏𝑏
𝐽𝐽
𝑑𝑑𝜔𝜔
𝑑𝑑𝑑𝑑

. (18) 

Replacing the derivative values, we get: 
 

𝑑𝑑2𝜔𝜔
𝑑𝑑𝑑𝑑2

=
3𝑛𝑛𝑝𝑝𝜆𝜆𝑚𝑚

2𝐽𝐽
�−

𝑅𝑅𝑠𝑠
𝐿𝐿𝑞𝑞
𝑖𝑖𝑞𝑞 −

𝑛𝑛𝑝𝑝𝜆𝜆𝑚𝑚
𝐿𝐿𝑞𝑞

𝜔𝜔 +
1
𝐿𝐿𝑑𝑑
𝑢𝑢𝑞𝑞� −

𝑏𝑏
𝐽𝐽 �

3𝑛𝑛𝑝𝑝𝜆𝜆𝑚𝑚
2𝐽𝐽

𝑖𝑖𝑞𝑞 −
𝑏𝑏
𝐽𝐽
𝜔𝜔 −

1
𝐽𝐽
𝜏𝜏𝐿𝐿� (19) 

 
Again, an auxiliary variable is used for the controller's development, defined as 𝑣𝑣𝑞𝑞 = 𝑑𝑑2𝜔𝜔/𝑑𝑑𝑑𝑑2. The PID controller is 

proposed as: 
 

𝑣𝑣𝑞𝑞 =
𝑑𝑑2𝑒𝑒𝜔𝜔
𝑑𝑑𝑑𝑑2

− 𝑘𝑘𝑑𝑑,𝑞𝑞
𝑑𝑑𝑒𝑒𝜔𝜔
𝑑𝑑𝑑𝑑

− 𝑘𝑘𝑝𝑝,𝑞𝑞𝑒𝑒𝜔𝜔 − 𝑘𝑘𝑖𝑖,𝑞𝑞 � 𝑒𝑒𝜔𝜔𝑑𝑑𝑑𝑑
𝑡𝑡

0
,                  𝑒𝑒𝜔𝜔 = 𝜔𝜔 − 𝜔𝜔∗, (20) 

 
where 𝜔𝜔∗ is the reference trajectory of the angular velocity for the PMSM, and 𝑒𝑒𝜔𝜔 is the tracking error of this trajectory. 

Continuing with the development, differentiating Eq. (20), we have: 
 

𝑑𝑑3𝑒𝑒𝜔𝜔
𝑑𝑑𝑑𝑑3

+ 𝑘𝑘𝑑𝑑,𝑞𝑞
𝑑𝑑2𝑒𝑒𝜔𝜔
𝑑𝑑𝑑𝑑2

+ 𝑘𝑘𝑝𝑝,𝑞𝑞
𝑑𝑑𝑒𝑒𝜔𝜔
𝑑𝑑𝑑𝑑

+ 𝑘𝑘𝑖𝑖,𝑞𝑞𝑒𝑒𝜔𝜔 = 0 (21) 

 
To select the controller gains, a stable polynomial of the same order as the highest derivative of Eq. (21) is proposed as 

𝑃𝑃(𝑠𝑠) = (𝑠𝑠 + 𝑝𝑝)3, so that 𝑘𝑘𝑖𝑖,𝑞𝑞 = 𝑝𝑝3, 𝑘𝑘𝑝𝑝,𝑞𝑞 = 3𝑝𝑝2 and 𝑘𝑘𝑑𝑑,𝑞𝑞 = 3𝑝𝑝. Finally, 𝑢𝑢𝑞𝑞 is solved from Eq. (19). The parameters for both 
controllers are 𝜁𝜁 = 2, 𝜔𝜔𝑛𝑛 = 45 rad/s, and 𝑝𝑝 = 100. The reference trajectory of angular velocity  𝜔𝜔∗ is defined by: 

 

𝜔𝜔∗ = �
𝜔𝜔1, 0 ≤ 𝑑𝑑 < 𝑑𝑑1

𝜔𝜔2 + (𝜔𝜔2 − 𝜔𝜔1)𝜑𝜑, 𝑑𝑑1 ≤ 𝑑𝑑 < 𝑑𝑑2
𝜔𝜔2, 𝑑𝑑 > 𝑑𝑑2

,              𝜑𝜑 = �𝑟𝑟𝑖𝑖 �
𝑑𝑑 − 𝑑𝑑1
𝑑𝑑2 − 𝑑𝑑1

�
2+𝑖𝑖3

𝑖𝑖=1

 (22) 

 
where 𝜔𝜔1  = 0, 𝜔𝜔2 = 150 rad/s, 𝑑𝑑1 = 0, 𝑑𝑑2 = 10 s, 𝑟𝑟1 = 10, 𝑟𝑟2 = - 15 and 𝑟𝑟3 = 6. The following expression represents the 

proposed load torque for the initial test cases. 
 

𝜏𝜏𝐿𝐿 = � 0.125𝑑𝑑2, 0 ≤ 𝑑𝑑 < 2 𝑠𝑠
0.5 + sin(𝑑𝑑 − 2) , 𝑑𝑑 ≥ 2 𝑠𝑠  

 
4. Computational simulation results 

The motor used for the computational simulation of the parameter estimator and the controller is the Estun EMJ-
04APB22, whose values were obtained from [16]. The motor parameters and the proposed variations are shown in Table 1. 
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Table 1: PMSM parameters used in the computational simulation. 

Parameter Initial 
value Variation Parameter Initial value Variation 

𝐿𝐿𝑑𝑑, 𝐿𝐿𝑞𝑞 8.5 mH 
2% at t = 0.5 s; 5% at t = 3.5 s; 
1% at t = 7 s 
0% at t = 9 s 

𝐽𝐽 31.69 × 10−6 
kg m 

2% at t = 0.7 s; 3% at t = 
2.5 s; 1% at t = 4.5 s; 0% at 
t = 8.5 s 

𝑅𝑅𝑠𝑠 2.7 Ω 
5% at t = 1.5 s; 3% at t = 4 s; 
1% at t = 6.5 s 
0% at t = 8 s 

𝑏𝑏 52.79 × 10−6 
Nms 

2% at t = 1.5 s; 4% at t = 
3.5 s; 
0% at t = 7.5 s 

𝜆𝜆𝑚𝑚 0.0615 
Wb 

2% at t = 1 s; 5% at t = 3 s; 1% 
at t = 4.5 s 
0% at t = 7.5 s 

   

 
The simulation results are depicted in Fig. 1, showing the control inputs. Small spikes are observed due to abrupt 

parameter changes, but their amplitude does not pose a considerable risk. 

 
Fig. 1: PMSM control inputs. 

 
Fig. 2 displays the PMSM output signals, which also exhibit spikes. The direct axis current 𝑖𝑖𝑑𝑑 follows the set 

trajectory, except a spikes couple. Regarding the speed tracking, spikes are visible, but an acceptable trajectory is 
maintained. Therefore, the controller and the estimator provide acceptable trajectory tracking. 

 
Fig. 2: PMSM closed-loop response signals. 

 
Electrical parameters estimation is depicted in Fig. 3, illustrating a good tracking of the proposed changes in Table 

1. A slight phase lag between the actual parameter change and the estimated one is noticeable in all cases. This 
discrepancy arises because there is a small time interval for estimation, during which the results are updated. 
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Fig. 3: Estimation of electrical parameters of the PMSM. 

 
Finally, the estimation of the mechanical parameters, as well as the load torque, are depicted in Fig. 4. It can be observed 

that the estimation of the inertia moment accurately tracks the variations, with only minor deviations. Some errors are 
noticeable regarding the viscous damping factor, which, although slightly more pronounced, remains acceptable. As for the 
load torque, estimated using a third-order Taylor polynomial, there is virtually no discernible difference between the 
proposed and estimated signals. 

 

 
Fig. 4: Estimation of the mechanical parameters of the PMSM and the load torque. 

 
5. Conclusion 

In this work, a variable load parameter and touch estimator applied to a permanent magnet synchronous motor was 
developed using Algebraic Estimation. The estimated parameters and the approximated torque were taken as feedback to a 
controller that regulates the direct axis current and the angular speed of the motor. The results show good tracking in both 
the trajectories proposed for the controller and the parameter estimates. A clear area of opportunity is to integrate the 
estimated parameters more smoothly so there are peaks in the motor responses. Another path that could be followed is to 
incorporate a machine's or vehicle's dynamics to observe the differences between the estimate and what was obtained in this 
work. 
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