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Abstract - Graph Convolutional Networks (GCNs) perform best on homophilic graphs, where connected nodes share similar
features; however, histopathology images pose a challenge due to their heterogeneous tissue patterns and diverse morphological
structures. In such images, ensuring homophily is crucial because, in non-homophilic graphs, message passing can cause over-
smoothing, where features from dissimilar tissue regions become mixed, reducing the ability to distinguish distinct patterns. To
address this, we introduce Boosted Adaptive Radius Graph (BARG), a novel graph modelling strategy tailored for Haematoxylin
and Eosin (H&E)-stained Tissue MicroArray (TMA) images. BARG improves upon the traditional Fixed Radius Graph (FRG)
approach by incorporating an adaptive, tissue-specific edge threshold and a two-hop edge promotion mechanism to enhance message
passing and maintain connectivity without compromising homophily. The adaptive threshold, termed Adaptive Radial Proximity
(ARP), is determined for each graph using statistical analysis of Local Density Features (LDFs) derived from FRG-based graphs
and is further refined using a globally optimised scaling factor across the dataset. We evaluate BARG using a dataset of 1000 TMA
images with balanced positive and negative samples for training and a test set of 554 images (287 positive and 257 negative), with
each patient contributing one image. Graph node features are extracted via a pre-trained VGG16 Convolutional Neural Network
(CNN) by processing small image patches centred at nucleus detection peaks. Compared to the FRG-based models, BARG yields
notable performance gains, achieving 78% accuracy, 75% sensitivity, and 81% specificity, marking a 4% improvement in accuracy
and an 8% increase in sensitivity. BARG also reaches an AUC-ROC of 0.85, a 3% enhancement over FRG, while preserving
structural and contextual tissue relevance. These results position BARG as a robust, scalable solution for graph modelling in
histopathology image analysis, suitable for broader applications in computational pathology.

Keywords: Breast Cancer Hormonal Status, Estrogen Receptor Status, Deep Learning, Graph Convolutional Networks, Digital
Pathology, Machine Learning, Features Over-smoothing, Breast Cancer Biomarkers

1. Introduction
       Breast cancer (BC) remains the most common cancer among women worldwide, with over 2.3 million new cases
in 2020 [1]. A critical factor in the prognosis and treatment of invasive BC is the assessment of ERS, a predictive
biomarker guiding hormone therapy decisions [2]. Clinical guidelines, including those from the American Society of
Clinical Oncology, recommend testing for both Estrogen Receptors (ER) and Progesterone Receptors (PR) in all
invasive BC patients. Immunohistochemistry (IHC) is the standard method for evaluating ERS and PR status (PRS),
with positivity defined as at least 1% of carcinoma cells showing staining of any intensity [3]. About 70% of BC patients
are ER-positive, making ERS the most influential marker for hormone therapy eligibility [4]. Although ER and PR are
often co-expressed, discordant cases are rare, and ERS is generally the primary determinant for hormone therapy.
Despite widespread use, IHC-based ERS assessment has notable limitations. It requires costly reagents, trained
personnel, and is time-consuming. More critically, IHC interpretation is subjective, relying on the visual estimation of
stained nuclei, which introduces variability and human error [5]. Technical factors such as tissue handling, fixation,
antibody selection, and thresholds also contribute to inconsistencies [2]. Studies report up to 20% inaccuracy in IHC-
based ERS results, causing false positives or negatives [3]. These challenges highlight the need for more objective,
reproducible, and scalable ERS assessment methods. H&E staining remains the primary histopathological tool for BC
diagnosis. Pathologists evaluate H&E slides for morphology, spatial arrangement, and cell density [6].
       Recent AI advances have shown that features from H&E images can correlate with ERS—even when not visually
apparent [5, 7, 8, 9, 10]. Most AI methods use CNNs [5, 7, 8, 9] or nuclei morphometric features as CNN inputs [10].
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However, CNNs are limited by local receptive fields, making them less effective at capturing long-range spatial
relationships crucial to tissue structure. Additionally, CNNs require large annotated datasets and often yield biologically
uninterpretable features. Graph-based representation learning has emerged as a powerful alternative in computational
pathology. In cell-graphs, nuclei serve as nodes, with edges encoding spatial relationships—enabling modelling of
complex inter-cellular dependencies [6, 11, 12, 13, 14]. GCNs have successfully classified H&E slides into diagnostic
categories like normal, benign, in-situ, and invasive carcinoma [15]. GCNs excel in capturing spatial relationships but
are highly dependent on effective graph structures and informative node features. Classifying H&E images using graph-
based modelling involves representing cells as graph nodes, with edges defined via spatial proximity—typically using
Euclidean distance thresholds. Properly designed graphs capture tissue-specific cell organisation. Existing studies
mainly use FRG strategy for cell-graph modelling with a radial proximity threshold, applying a global threshold to
define edges. 
       Despite advancements in computational pathology, graph-based classification of BC ERS from H&E-stained images
remains largely unexplored. We address this gap by introducing a novel feature-embedded graph modelling strategy
tailored specifically for BC ERS classification. Our approach incorporates cell organization into graph construction and
integrates deep features extracted from a pre-trained VGG16, a powerful CNN model. This method aims to improve
classification accuracy, sensitivity, and AUC-ROC compared to the conventional FRG strategy. We extend FRG into
an enhanced framework, termed BARG, by introducing several key innovations. First, we construct FRG-based graphs
using an optimised connectivity threshold applied across the full dataset. From these graphs, we extract a tissue-specific
parameter derived from the Cumulative Distribution Function (CDF) of nodes’ Local Density Features (LDFs), which
guides the graph modelling process. To improve node communication in GCNs, we apply a 2-hop edge promotion
strategy to link each node directly to its second-hop neighbours, enhancing the graph connectivity. The tissue-specific
parameter is further refined using a globally optimised scaling constant. This multi-stage pipeline enables more precise
modelling of tissue microenvironments, resulting in improved classification outcomes.

Fig. 1: BARG strategy for graph modelling of H&E-stained histology images

2. Materials and Methods
       We hypothesise that ERS in invasive breast cancer can be accurately predicted from H&E-stained slides by modelling
both cellular morphology and inter-cellular spatial relationships, enhanced by deep learning features. 
       Figure 1 provides an overview of our proposed graph construction methodology, BARG strategy, which consists of
the following steps:
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2.1. Data Acquisition
       We use the publicly available Genetic Pathology Evaluation Centre (GPEC) databank [17-19], comprising 17 H&E-
stained TMA slides from patients with invasive breast cancer, each annotated with pathologist-assessed ERS. After
quality control, we curated a cohort of 1554 patients, each with a single TMA image containing at least 600 segmented
nuclei. The dataset was split into a balanced training set (1000 images: 500 ER-positive, 500 ER- negative) and an
independent test set (554 images: 287 ER-positive, 257 ER-negative). Each TMA image measures 650  800 pixels,
corresponding to a 0.6 mm diameter tissue core.

2.2. Nuclei segmentation
       Nuclei segmentation is performed using a multi-step image processing pipeline: (1) image upscaling, (2) background
removal, (3) conversion to HSV and extraction of the brightness channel, (4) Otsu thresholding, (5) filling holes in
detected nuclei, and (6) watershed segmentation to separate overlapping nuclei [20]. This approach, adapted from [10],
ensures accurate identification of nuclei for subsequent graph construction.

2.3. FRG Strategy
       We consider the nuclei detected in Section 2.2 as graph nodes to build the graph model defined as  G = {V, E, A}
for a given H&E-stained TMA image. Here, V is a finite set of graph nodes exhibiting at least one edge in the graph
model, E is the set of graph edges, and A is an unweighted connectivity matrix constructed based on spatial proximity
between pairs of nuclei (nodes). For the FRG strategy, we establish edges using a constant threshold dmax across all
images, AFRG,q is the graph adjacency matrix built with FRG strategy for the qth image in dataset:

AFRG, q i,j = 1,        if xi − xj
2 + yi − yj

2 ≤ dmax
0 ,                                                       otherwise

,    i, j = 0,1, …, N − 1        (1)

where dmax is a critical hyper-parameter that determines the spatial connectivity threshold in FRG construction. We
optimise this parameter through grid search to maximise the ERS classification accuracy on our BC TMA image dataset,
ensuring optimal graph connectivity for effective message passing in GCNs.

2.4. BARG Strategy
       For the qth FRG model in our dataset, denoted as GFRG,q, we compute LDF (i, q) for its ith node as a normalized
score representing its spatial proximity to its three closest neighbours, if they exist, as follows:

LDF i,q = 1 − 1
dmax

  ∙
∑ min deg i,q

j = 1 rij
min 3, deg i,q      if  deg i,q ≥ 1,

0 ,                                                           otherwise
                                              (2)

 i = 0, 1, …, N − 1                                                                                                                                 

where rij is the distance between node i and its jth closest neighbour in the graph. deg(i, q) is degree of node i in GFRG,q
measured as deg i,q = ∑N − 1

j = 0,  j ≠ iAFRG, q i,j  . To determine the tissue-specific distance for GFRG,q as DTS(Gq), we
analyse the CDF of LDFs in this graph model by plotting CDF curve for LDFs across all nodes. The 80th percentile in
the CDF curve of qth graph, denoted as T80(Gq), is selected as our fixed reference point. This percentile is converted to
a distance value as shown in Eq (3).

                                       DTS Gq =  1 −  T80 Gq  dmax                                             (3)
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       After measuring the tissue-specific parameter for each FRG model in our dataset as {DTS(q) | q ∈ [0, N − 1]}, we
adjust these tissue specific parameters using a multiplier m to define ARP threshold for the qth graph noted as
dARP q  as 

                                                dARP Gq =  m DTS(Gq)                                                     (4)

       This parameter m is later optimised via grid search using the entire BARG-based graph dataset (constructed using
Eq (6)) in conjunction with our GCN classifier (refer to Section 2.6.) to maximize classification accuracy.
       The adjacency matrix for qth Adaptive Radial Proximity Graph model, denoted as ARG(q), is defined as

AARG, q i,j = 1,    if xi − xj
2 + yi − yj

2 ≤ dARP Gq
0 ,                                                         otherwise

,                                    (5)

      i, j = 0,1, …, N − 1                                                                                                                      

       We enhance connectivity in ARG(q) model through a targeted rewiring strategy that converts the 2-hop neighbours
of each node into direct 1-hop neighbours defining the final adjacency matrix from BARG strategy for qth graph as

                                                  ABARG,q = AARG,q × AARG,q                                                (6)
 
       Converting 2-hop edges into 1-hop edges increases intra-cluster edge density and enhances message passing
efficiency. After building the Adjacency matrices using Eq (6) for different values of m in Eq (4), parameter m is
optimised through grid search to achieve the maximum accuracy from GCN (refer to Section 2.6.) using the BARG-
based graph dataset. Figure 1 shows a figurative abstract for BARG and FRG graph construction strategies.

2.5. Graph Feature Matrix
       The graph feature matrix X ∈ ℝN × d  where N is the number of nodes and d is the number of features is constructed
using a VGG16 model pre-trained on ImageNet [21], a powerful CNN employed as a feature extractor with its top
classification layer removed. For each nucleus - modelled as a graph node - a feature vector is extracted from an image
patch of size p  p, centred at the nucleus detection peak.

2.6. GCN Classifier
       Following [16], we build a GCN by implementing the layer-wise propagation rule for spectral graph convolution
operations. For the lth layer, the propagation rule is defined as

                                            H l + 1 = σ(D̃ − 1
2 A D̃ − 1

2 H l W l )                                            (7)

where A is the adjacency matrix, D is the Degree matrix, H(l) represents the input feature matrix to the lth graph
convolution layer, and W(l) is the trainable weight matrix for the lth graph convolution layer,  denotes the activation
function. H(0) is the graph feature matrix X. This GCN model consists of two graph convolutional layers, with the number
of filters in each layer denoted by the hyperparameters f1  and f2 , which are optimised during experimentation.

3. Results and Discussion
       The FRG dataset is constructed using a threshold value of dmax=40, which is optimised for the dataset via grid search
according to Eq (1). LDFs are then computed for all nodes in each graph model built using the FRG method as defined
in Eq (2). Additionally, the tissue-specific distance for the qth graph, DTS(Gq), was calculated using Eq (3). Then, a
multiplier m =  3  was determined via grid search by computing dARP(Gq) values using Eq (4), constructing BARG-
based dataset through Eqs (5) and (6), and evaluating its performance using our GCN classifier. The value of m that
yielded the highest classification accuracy using the BARG-based dataset was selected. After finding the global
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parameter m and the tuned tissue-specific parameters {DTS(q) | q ∈ [0, N −1]}, we computed {dARP(q) | q ∈ [0, N − 1]}
values using Eq (4) to build adjacency matrices for ARG-based models using Eq (5). Then, we build adjacency matrices
for  BARG-based models using Eq (6). We train and validate a GCN classifier as explained in Eq (7) on FRG−based
dataset denoted as GCN(FRG). We also train and validate another GCN on the BARG−based dataset denoted as
GCN(BARG). In our experiments with the GCN classifier, the number of filters in two graph convolutional layers
denoted as f1 and f2 were optimised and set to f1 = f2 =  512. The model was trained using the binary cross-entropy
loss function and the optimiser used was Adam with a learning rate of 0.0001. The graph feature matrix X was
constructed using feature vectors extracted as described in Section 2.5. Specifically, by setting p=33, image patches of
size 33×33 were extracted, centred at the detection peak of each nucleus, resulting in feature vectors of dimension d =
512. We used AFRG,q from Eq (1), and ABARG,q from Eq (6) as adjacency matrix A in Eq (7) to train GCN(FRG) and
GCN(BARG) models, respectively. Table 1 presents a comparison of accuracy metrics between these two models.
Representing accuracy as acc., AUC-ROC as AUC, sensitivity as Sens., specificity as Spec., Positive Predictive Value
as PPV, Negative Predictive Value as NPV, Area Under Precision Recall curve as AUPR, and F1-score as F1. In
comparison to FRG-based models, BARG delivers significant performance improvements, attaining 78% accuracy, 75%
sensitivity, and 81% specificity—representing a 4% increase in accuracy and an 8% boost in sensitivity. It also achieves
an AUC-ROC of 0.85, reflecting a 2% gain over FRG, while effectively maintaining structural integrity and tissue
context. Figure 2 presents the ROC curves of GCN(FRG) and GCN(BARG) on the left, and their corresponding
Precision–Recall curves on the right. 

Table 1: Performance Metrics GCN(BARG) and GCN(FRG)

Fig. 2: Performance comparison of FRG and BARG strategies. left: ROC-Curves Comparison, right: PR-Curves 
Comparison.

       These findings establish BARG as a reliable and scalable approach for graph modelling in histopathology image
analysis, with strong potential for broader use in computational pathology. Feature over-smoothing is a known issue in
heterogeneous graph structures, where dissimilar node features become indistinguishable during message passing. To
address this, our method enhances graph homophily through the use of ARP threshold for graph construction while
maintaining strong connectivity by promoting 2-hop edges to 1-hop, ensuring effective message propagation in GCN. 

Classifier acc. AUC Sens. Spec. PPV NPV AUPR F1
GCN(BARG) 0.778 0.847 0.746 0.813 0.817 0.741 0.851 0.780
GCN(FRG) 0.741 0.816 0.672 0.817 0.804 0.691 0.833 0.732
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4. CONCLUSIONS
       We propose BARG, the first adaptive graph modelling strategy that accounts for variable tissue structures by
measuring local cell density percentiles, enabling tissue-specific graph construction. We use LDFs to define a tissue-
specific threshold for connectivity, while also applying a dataset-wide adjustment to optimise this threshold for
improved GCN performance. Using BARG for graph construction significantly enhances BC ERS classification
accuracy with a GCN classifier, compared to the traditional FRG strategy. BARG provides a robust and generalisable
framework for graph modelling and can be readily extended to other graph-based histology image classification tasks.
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