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Abstract

Amid escalating environmental pollution and resource depletion, transforming plant waste into high-value functional
materials has become a pivotal strategy for advancing circular economies. Among these materials, carbon quantum dots
(CQDs), a category of novel carbon nanoparticles, possess significant potential for a wide range of applications owing to
their remarkable physical and optical properties, high biocompatibility, low toxicity, and hydrophilicity. Despite multiple
methods for producing CQDs, demand is rising for employing cost-effective and environmentally friendly synthetic methods.
Thus, this study presents a one-pot hydrothermal synthesis of CQDs using jojoba meal (Simmondsia chinensis seed residue
as a precursor, denoted as JCQDs), without surface passivation agents or oxidizers. The TEM micrograph revealed that the
synthesized JCQDs exhibited uniform morphology with an average diameter of 25.7 nm. Additionally, UV-Vis analysis of
JCQDs showed a characteristic absorption peak at 260 nm and emitted bright greenish-blue fluorescence under 350 nm UV
excitation. Notably, JCQDs demonstrated a promising antimicrobial activity against Gram-positive (Staphylococcus aureus)
bacteria, highlighting their potential for biomedical and environmental applications. Therefore, this study revealed the
recyclability of jojoba meal as a sustainable and eco-friendly precursor for high-performance fluorescent nanomaterials,
enabling a novel approach for plant biomass valorization.
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1. Introduction

Carbon Quantum Dots (CQDs) are a novel class of zero-dimensional photoluminescent carbon nanomaterials with
typical diameters smaller than 10 nm. CQDs exhibit distinctive visual characteristics, diverse surface functionalities,
excellent biocompatibility, low toxicity, hydrophilicity, and notable optical properties [2]. They have recently attracted
attention in various fields, including bioimaging, biosensing, food packaging, solar cells, drug delivery, and photodynamic
therapy([3, 12]. For example, CQDs exhibit significant antibacterial and anticancer effects when subjected to external energy
stimuli, leading to the production of Reactive Oxygen Species (ROS) [11]. CQDs also have antioxidant properties and
enhanced UV absorption capabilities, attributed to their remarkable electron acceptor characteristics, along with the
abundance of n-m conjugated groups in their core [3].
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Various methods for producing CQDs are available; however, there is growing interest in employing low-cost and
environmentally sustainable synthetic methods [1]. High-purity chemicals are frequently utilized as precursors in
synthesizing CQDs to enhance the efficiency and uniformity of the synthesis process. However, they also necessitate high
energy consumption and use toxic and aggressive chemical additives that threaten the biological environment [7]. These
factors collectively render the process economically unviable [1]. Therefore, green synthesis has attracted significant interest
in recent years, where plant biomass-based CQDs are considered the most sustainable fluorescent nanomaterial.

The plant biomass exhibits significant biocompatibility owing to the presence of naturally occurring stabilizing and
reducing agents within its tissues [7]. In addition, plant biomass comprises various organic compounds such as carbohydrates,
proteins, amino acids, and secondary metabolites, which provide essential elements for the surface functionality of CQDs
[8]. The green synthesis route of CQDs facilitates the conversion of plant waste into valuable biomass-based CQDs, reducing
waste generation and enhancing resource reutilization [4]. This, in turn, mitigates the carbon footprint associated with
traditional synthesis methods and meets the circular economy and sustainable approach. Therefore, this study aims to (i)
recycle the jojoba meal, one of the agricultural wastes, to produce jojoba-derived carbon quantum dots (JCQDs) and (ii)
examine the antimicrobial efficiency of the produced JCQDs.

2. Materials and Methods

2.1. JCQDs fabrication

The fluorescent CQDs were synthesized from jojoba meal using a hydrothermal method(Fig. 1). Prior to synthesis, the
jojoba meal was dried and finely ground into a powder. A mixture of 0.5 g of jojoba meal and 50 mL of deionized water was
transferred into a Teflon-lined stainless-steel autoclave and heated at 180 °C for 12 hours. After completion, the solution was
allowed to cool naturally to room temperature. The resulting brown-coloured solution was centrifuged at 8000 rpm for 30
minutes and filtered with a 0.45 pm membrane filter to remove large particles. Further purification was performed via dialysis
using a membrane (MWCO: 3 kDa). The purified supernatant was kept at 4 °C for further characterization and analysis.
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Fig. 1: Schematic abstract of the main steps included in the practical work.

2.2. JCQDs Characterization

The fluorescence emission properties of the synthesized JCQDs were examined using a fluorescence spectrophotometer
(Hitachi F-7100 FL, Japan). Emission spectra were recorded across excitation wavelengths from 250 to 500 nm to identify
the peak fluorescence intensity. Optical absorption spectra were measured spectrophotometrically with a UV-visible
spectrophotometer (Hitachi U-3900, Japan) at 25 °C, with scans conducted between 220 and 700 nm. Morphological analysis
was performed using transmission electron microscopy (JEOL JEM-2100, Japan) to assess CQD size and shape. ImagelJ
software assessed particle size (Version 1.53k, NIH, USA).

2.3. Antibacterial activity
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The antibacterial effectiveness of JCQDs against Gram-positive Staphylococcus aureus was assessed using the
conventional disk diffusion method. A bacterial suspension calibrated to the 0.5 McFarland standard (~1 x 10* CFU/mL) was
evenly distributed on agar plates. Sterile filter paper disks (6 mm in diameter) impregnated with different concentrations of
JCQDs (e.g., 10 and 20 pg/mL) were aseptically positioned onto the inoculated agar. Positive control (jojoba meal) and
negative control (sterile distilled water) were incorporated. Plates were incubated at 37 °C for 24 hours, after which the
diameters of the inhibition zones surrounding the disks were determined in millimeters. Zone diameters indicated the extent
of antibacterial action.

3. Results and Discussion

3.1. Characterization of JCQDs

The surface morphology of the synthesized JCQDs was observed by TEM (Fig. 2A). The TEM image demonstrates that
JQDs were uniform in shape with an average diameter of 25.7 nm. Figure 1B shows an optical property of JCQDs that
exhibited an absorption peak observed at 260 nm. This absorption spectrum is possibly ascribed to the n—n* transitions [13].

Fig. 2C shows the excitation-dependent emission spectra of JCQDs from 260 to 500 nm. As the excitation wavelength
increased, the fluorescence emission spectra of JCQDs showed a distinct wavelength dependence and shifted toward longer
wavelengths. Moreover, JCQDs exhibited maximum fluorescence emission at 430 nm at the optimal excitation wavelength
of 350 nm, emitting a bright greenish-blue fluorescence. This excitation-dependent emission behavior could be influenced
by parameters that vary with particle dimensions, surface functional groups, and energy traps [13].
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Fig. 2: Characterization of Jojoba meal-derived carbon quantum dots (JCQDs): (A) TEM analysis, (B) UV—Visible absorption
spectrum, and (C) Fluorescence emission spectra under excitation wavelengths from 260 to 500 nm at 20 nm intervals.

3.2. Anti-microbial Activity

Fig. 3 illustrates that JCQDs effectively limit S. aureus growth to approximately 3.5 mm £0.1 at 20 pg/ml. This growth
inhibition possibly results from membrane lysis caused by interactions between JCQD surfaces and bacterial cell membranes.
Indeed, nitrogen heteroatoms in CQDs produce positively charged groups, boosting electrostatic attraction to the negatively
charged peptidoglycan in bacterial cell walls and intracellular components [6, 10]. This adhesion leads to physical and
mechanical damage of the bacterial barrier, facilitating the penetration of CDs into the interior membranes [9], consequently
disrupting essential biological functions [6]. Additionally, Gupta, Priyadarshi, Tammina, Rhim and Agrawal [5]proposed
that the antibacterial mechanism of CQDs involves the generation of ROS, including superoxide anions (O2-¢), singlet
oxygen (102), and hydroxyl radicals (*OH). These radicals trigger oxidative stress within bacterial cells, damaging cell
membranes, denaturing proteins, and fragmenting nucleic acids, ultimately leading to cell death[6]. Although JCQDs exhibit
antimicrobial potential, higher concentrations are necessary to improve their effectiveness as antimicrobial agents.
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Fig. 3: Photograph of Staphylococcus aureus culture dishes treated with different Jojoba meal-derived carbon quantum dots
(JCQDs) concentrations.

4. Conclusion

This study presented a novel approach for plant biomass valorization by recycling jojoba meal to synthesize fluorescent
CQDs using a one-pot hydrothermal method, reducing the demand for surface passivators or oxidizers. The JCQDs emit
bright greenish-blue fluorescence when excited at 350 nm. Moreover, JCQDs demonstrated potent antimicrobial activity
against S. aureus. These results highlighted jojoba waste as a green, eco-friendly precursor for high-performance
nanomaterials and also provided a blueprint for the circular utilization of plant waste. Further research is required to optimize
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JCQD concentration to enhance antimicrobial potency and examine its effects against multidrug-resistant strains, along with
potential biomedical and environmental applications.
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