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Abstract – Accurate prediction of river stage in ungauged basins is essential for flood forecasting and water resource management,
particularly in regions with limited observational data. This study investigates the integration of Geographic Information Systems (GIS)
enhanced reanalysis data with machine learning (ML) techniques to predict river stage levels in the Upper Ping River Basin, northern
Thailand. Five years of hourly hydrometeorological variables from the ERA5-Land dataset, combined with observed river stage
measurements from the P.1 Hydrological Station, were used to train and evaluate four ML models: Random Forest Regression (RFR),
Extreme Gradient Boosting (XGB), Support Vector Regression (SVR), and Multi-Layer Perceptron (MLP). Bayesian hyperparameter
optimization and five-fold cross-validation were employed to ensure robust model training and evaluation. Among the models, XGB
achieved the highest accuracy with an R² score of 0.9882, followed by RFR (0.9792), while SVR and MLP exhibited lower performance
and higher sensitivity to data variability. Feature importance was further examined using SHapley Additive exPlanations (SHAP),
revealing that runoff and soil moisture variables contributed most significantly to model performance, while wind, temperature, and even
precipitation showed comparatively lower influence. A feature exclusion analysis confirmed that removing the top 14 ranked features
substantially reduced prediction accuracy, underscoring their importance. The results highlight the potential of interpretable ML models
combined with high-resolution GIS-based data for reliable river stage prediction in data-scarce regions. This framework offers promising
applications in real-time flood forecasting and hydrological decision-making. 
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1. Introduction
River stage, also referred to as water level or stage height, is the height of the water surface above a predefined reference

point, typically a local datum at a specific location along a river [1]. It serves as a fundamental measurement in hydrology
and is crucial in determining river discharge through rating curves, which establish a relationship between the river stage and
the volume of water flowing in the river. Monitoring and understanding river stage is essential in hydrology due to its critical
role in water resource management, environmental conservation, and hazard mitigation [2]. For the safe and reliable design
of hydraulic structures, probabilistic assessment techniques particularly those based on extreme value analysis are employed
to estimate hydrological extremes, thereby informing critical design parameters in civil engineering applications [3-5]. In
recent years, researchers have integrated Geographic Information Systems (GIS) data with machine learning (ML) algorithms
to enhance the understanding and simulation of hydrological processes across a wide range of applications. GIS offers robust
tools for capturing and analysing spatiotemporal data, including topography, land use, soil characteristics, atmospheric
conditions, precipitation, and weather patterns, while ML algorithms leverage these datasets to uncover complex, nonlinear
relationships and generate accurate predictions. A wide range of ML techniques have been applied and compared with
traditional hydrological models in tasks such as rainfall–runoff simulation [6, 7], sediment transport modelling [8], and flood
risk assessment [9-11], demonstrating their potential for improved performance and real-time decision-making in water
resource management. 

However, predicting river stage of ungauged basins remains challenging due to the absence of in-situ observations and
spatial heterogeneity. Traditional and physically-based models often struggle without calibration, while machine learning
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approaches like Long Short-term Memory (LSTM) require extensive training data and are sensitive to data quality and
variability [12]. River systems are influenced by multiple interdependent factors, including rainfall, terrain characteristics,
soil infiltration, land use, and climatic variability. Traditional hydrological models often struggle to fully capture these
complexities. Another major issue is data availability and quality. Reliable river stage prediction depends on extensive, high-
quality datasets that include past river flow, precipitation, and other meteorological variables. Many regions, especially in
developing countries, lack dense monitoring networks, leading to data gaps and inaccuracies. Even when data is available,
inconsistencies due to instrument errors, missing values, and sensor malfunctions can introduce uncertainties in the
predictions [13].  In this study, we utilize data from ERA5-Land hourly reanalysis in conjunction with diverse machine
learning techniques to determine the most effective models and key predictive features for river stage forecasting in ungauged
basins. 

2. Material and methods
2.1. Study Area

The Upper Ping River Basin is geographically located in northern Thailand, primarily covering Chiang Mai Province
and partially extending into neighbouring provinces such as Lamphun and Tak. In this study, river stage data are obtained
from the P.1 Hydrological Station, situated at latitude 18.7876 and longitude 99.0044. The station, owned and operated by
the Royal Irrigation Department under the Ministry of Agriculture and Cooperatives, plays a vital role in flood prediction
and mitigation efforts for Chiang Mai City. The catchment area of the station is approximately 6,350 km²  [14] and comprises
six distinct upper basins, each characterized by varied landscapes, including high mountainous regions, rolling hills, and
expansive floodplains, with individual hydrological stations as shown in Figure 1. However, to simulate the conditions of
ungauged basins, only data from the P.1 Station was used for prediction. The area is subjected to a tropical monsoon climate,
distinctly marked by wet and dry seasons. Annual rainfall averages between 900 and 1,900 mm [15], predominantly occurring
from June to September, accounting for approximately 80% of the total yearly precipitation [10]. This seasonal rainfall
distribution profoundly influences the basin’s hydrological dynamics, particularly concerning flood events and overall water
resource management.

Fig. 1: Study Area.
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2.2. Data
Five years of hourly river stage data, spanning from 2019 to early 2024, were obtained from the Royal Irrigation

Department, Ministry of Agriculture and Cooperatives. As illustrated in Figure 2, the river stage demonstrates distinct
seasonal and interannual variability, with pronounced peaks typically occurring during the monsoon seasons. The blue line
represents the daily maximum gauge height, while the red dashed line indicates the critical flood threshold at 4.2 meters.
During most of the observation period, water levels remained between 1.0 and 2.0 meters. However, several significant
surges were recorded, including an extreme event during the 2022 monsoon season when the river level exceeded the flood
threshold, resulting in inundation within the city. 

Fig. 2: P.1 Hydrological Station Daily Maximum Gauge Height.

ERA5-Land is a high-resolution, hourly reanalysis dataset developed by the European Centre for Medium-Range
Weather Forecasts (ECMWF), offering a consistent and detailed representation of land surface variables from 1950 to the
present [16]. It comprises more than 60 variables at approximately 9 km spatial resolution (0.1° × 0.1°) and hourly temporal
resolution, covering essential hydrometeorological fields such as multi-depth soil moisture and temperature, surface fluxes,
radiation, precipitation, wind, and runoff. In this study, 34 variables relevant to the hydroclimatic characteristics of the study
area were selected, excluding snow and lake-related parameters due to their limited relevance in the region. The selected
variables were spatially aggregated within the study catchment using summary statistics tailored to their physical nature,
precipitation was aggregated using a summation method, while temperature and similar variables were aggregated using the
mean. These processed variables were subsequently employed as input features for the machine learning models. A detailed
list of the ERA5-Land variables utilized is presented in Table 1. The dataset was partitioned into training/validation and
testing sets, with 80% of the data allocated for training and validation, and the remaining 20% reserved for final testing.
Within the training and validation set, five-fold cross-validation was employed to optimize model performance and prevent
overfitting. Once the optimal hyperparameters were identified, the best-performing model configuration was evaluated on
the unseen test set. The dataset spans from January 1, 2019, at 00:00 hours to December 31, 2023, at 23:00 hours, comprising
a total of 43,824 hourly samples.

Table 1: ERA5-Land variables for input features.

Input Features (Unit)
dewpoint_temperature_2m (K) runoff_hourly (m) u_component_of_wind_10m (m/s)
temperature_2m (K) sub_surface_runoff_hourly (m) v_component_of_wind_10m (m/s)
skin_temperature (K) surface_runoff_hourly (m) soil_temperature_level_1 (K)
forecast_albedo total_evaporation_hourly (m) soil_temperature_level_2 (K)
surface_pressure (Pa) total_precipitation_hourly (m) soil_temperature_level_3 (K)
surface_latent_heat_flux_hourly (J/m2) potential_evaporation_hourly (m) soil_temperature_level_4 (K)
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surface_net_solar_radiation_hourly 
(J/m2)

surface_sensible_heat_flux_hourly (J/m2) surface_net_thermal_radiation_hourly 
(J/m2)

surface_solar_radiation_downwards_ 
hourly (J/m2)

leaf_area_index_high_vegetation        
(area fraction)

leaf_area_index_low_vegetation        
(area fraction)

volumetric_soil_water_layer_1     
(volume fraction)

volumetric_soil_water_layer_2      
(volume fraction)

volumetric_soil_water_layer_3     
(volume fraction)

evaporation_from_bare_soil_hourly      
(m of water equivalent)

evaporation_from_the_top_of_canopy_ 
hourly (m of water equivalent)

evaporation_from_vegetation_transpira 
tion_hourly (m of water equivalent)

evaporation_from_open_water_surfaces_
excluding_oceans_hourly                       
(m of water equivalent)

2.3. Machine Learning Models
In this study, we conduct a comparative analysis of four distinct machine learning regression models: Random Forest

Regression (RFR) [17], Extreme Gradient Boosting (XGB) [18], Support Vector Regression (SVR), and Multi-Layer
Perceptron (MLP). These models were selected for their proven ability to handle complex, nonlinear relationships and their
extensive use in real-world applications across diverse fields. RFR and XGB are ensemble-based methods that utilize
multiple decision trees to enhance predictive accuracy. SVR employs kernel-based learning techniques to capture high
dimensional patterns while maintaining strong generalization capabilities. MLP is a fundamental type of feedforward
artificial neural network that is effective in modelling nonlinear relationships in multivariate datasets. Each machine learning
model was optimized through hyperparameter tuning using a Bayesian optimization approach implemented via Optuna [19],
combined with five-fold cross-validation to ensure robust and generalizable performance. The number and type of
hyperparameters varied across models, reflecting differences in their structural complexity and learning mechanisms. Model
performance was evaluated using the coefficient of determination (R² score) as shown in Eq. (1), which measures the
proportion of variance explained by the model. 

R2 = 1 −  
∑

i = 1

n
yi −  ŷi

2

∑
i = 1

n

yi −  y̅i 2
(1)

Where yi denotes the observed (actual) value, ŷi represents the predicted value generated by the model,  y̅i is
the mean of the observed values, and n is the total number of observations. The model that achieved the highest
predictive accuracy was subsequently selected for feature selection analysis to assess the relative importance of input
variables. 

3. Results and Discussion
3.1. Model Performance Evaluation

To evaluate the predictive performance of the selected machine learning models, we conducted hyperparameter tuning
and integrated with five-fold cross-validation method. Each model was optimized through 50 iterative trials to ensure a
comprehensive exploration of the hyperparameter space and robust generalization. Table 2 summarizes the optimal
hyperparameters identified during this optimization process, along with their corresponding R² scores and computational
times. The predictive performance ranking of the models based on their R² scores is as follows: XGB (0.9882), RFR (0.9792),
SVR (0.8464), and MLP (0.7575). In terms of computational efficiency, MLP required the least optimization time, followed
by SVR, XGB, and RFR, respectively. Among the evaluated models, the ensemble-based methods, RFR and XGB,
consistently outperformed SVR and MLP, demonstrating superior capability in capturing the complex, nonlinear
relationships within the dataset. However, these ensemble methods also required longer computational times, with RFR
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taking the longest, 46 minutes and 49 seconds, to complete the optimization process.    It is noteworthy that achieving
satisfactory results with SVR necessitated standard scaling of input features, while MLP required standard scaling of both
input features and labels. Figure 3 illustrates the variability and distribution of R² scores for each model across the five cross-
validation folds. Both XGB and RFR exhibited narrow interquartile ranges and fewer outliers, indicating high consistency
and robustness across data splits. In contrast, SVR and MLP demonstrated greater variability, suggesting increased sensitivity
to training data partitioning and underscoring the necessity for careful data preprocessing to ensure reliable performance. To
maintain visual clarity and comparability in the plot, two extreme outlier trials from SVR and eleven from MLP, each yielding
negative R² scores, were excluded, as their inclusion would have distorted the scale due to their significant deviation from
the majority of results. 

Table 2: Hyperparameters tuning results for machine learning models.

Model Hyperparameters Description Optimization 
Range Best Setup R2 Score Optimization

Time (s)
RFR n_estimators  Number of trees in the forest 100 to 3,000 2,307 0.9792 46 m 49 s

max_depth  Maximum depth of each tree 3 to 20 19
max_features  Fraction of features to consider for 

splitting
0.1 to 1.0 0.8436

min_samples_leaf Minimum samples required at a 
leaf node

1 to 10 2

XGB learning_rate  Learning rate 0.001 to 0.1 0.0319 0.9882 19 min 1 s
n_estimators  Number of boosting rounds (trees) 100 to 3,000 2,248
max_depth  Maximum depth of each tree 3 to 20 16
min_child_weight Minimum sum of instance weight 

for splitting 
1 to 10 2

gamma  Minimum loss reduction to split 0 to 5 0.00017
subsample  Fraction of samples used per tree 0.5 to 1.0 0.6788
colsample_bytree Fraction of features used per tree 0.5 to 1.0 0.8183

SVR C  Penalty for misclassification 0.1 to 10 9.9367 0.8464 9 min 18 s
epsilon  Margin of tolerance around 

predicted value 
0.01 to 1.0 0.0335

gamma Radial Basis Function (RBF) 
influence 

0.0001 to 0.1 0.0655

MLP n_layers  Number of hidden layers 1 to 20 3 0.7575 8 min 37 s
n_units_l  Number of neurons per layer 10 to 1,000 848, 636, 196
activation  Activation function identity, logistic, 

tanh, relu
relu

learning_rate_init Initial learning rate 0.0001 to 0.1 0.00146
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Fig. 3: Hyperparameter tuning results from optimization trials.

3.2. Feature Importance Evaluation
Following the comparative evaluation of model performance, XGB model was selected for the subsequent feature

importance analysis, owing to its superior predictive accuracy and relatively efficient computational time. To assess the
contribution of individual features, the model was initially trained using all 34 input variables. Feature importance was then
quantified using SHapley Additive exPlanations (SHAP) [20], a robust, model-agnostic interpretability framework that
provides locally accurate explanations of feature impact on the model’s predictions. Figure 4 displays the mean absolute
SHAP values for each of the 34 features, revealing that variables associated with runoff and soil moisture, consistent with
established hydrological processes, dominate the upper ranks. In contrast, features related to wind components, solar
radiation, temperature, and evaporation rank lower, suggesting a comparatively weaker influence on the model’s predictive
capability. Notably, precipitation exhibits a surprisingly low impact on the model's performance.
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Fig. 4: Feature importance ranked by mean absolute SHAP value.

To evaluate feature importance, we conducted experiments under four distinct scenarios. In Scenario 1, the model was
trained using all 34 input features. In Scenario 2, the top four features—those with the highest SHAP values—were removed.
Scenario 3 involved excluding the top 14 features, while Scenario 4 retained only the 10 lowest-ranking features after
removing the top 24. Figure 5 presents a comparative analysis of the actual river stage height versus the predicted height for
each scenario, alongside their corresponding R² scores. Scenario 1 achieved the highest R² score of 0.9882, followed closely
by Scenario 2 with 0.9778. In contrast, Scenario 3 and Scenario 4 obtained R² scores of 0.4838 and 0.2669, respectively.
These results clearly demonstrate that the top 14 features are critical to the model’s accuracy, as their exclusion leads to a
substantial deterioration in predictive performance.
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Fig. 5: Comparison of predicted and actual river stage heights under feature exclusion scenarios.

4. Conclusion
This study demonstrates the effectiveness of GIS-enhanced data and machine learning techniques in predicting river

stage in ungauged basins, with a specific focus on the Upper Ping River Basin in northern Thailand. By leveraging five years
of hourly hydrometeorological data from the ERA5-Land reanalysis product, along with observed river stage measurements
from a hydrological station, we evaluated the performance of four machine learning models: Random Forest Regression
(RFR), Extreme Gradient Boosting (XGB), Support Vector Regression (SVR), and Multi-Layer Perceptron (MLP). The
models were optimized using Bayesian hyperparameter tuning and validated through five-fold cross-validation. Among the
models tested, XGB consistently delivered the highest predictive accuracy, with an R² score of 0.9882, followed closely by
RFR at 0.9792. SVR and MLP exhibited lower performance and greater sensitivity to data partitioning and outlier, with R²
scores of 0.8464 and 0.7575, respectively. These findings demonstrate the superior capability of ensemble tree-based
methods in capturing the complex, nonlinear interactions inherent in hydrological systems, albeit with increased
computational demands.

To further interpret model behaviour, SHAP analysis was employed to assess the contribution of each input feature. The
results revealed that variables related to runoff and soil moisture were the most influential, while wind components,
temperature, and solar radiation were comparatively less impactful. Interestingly, precipitation showed a limited effect on
model performance, contrary to conventional hydrological assumptions. A feature exclusion experiment was conducted to
evaluate model robustness under varying input conditions. As expected, the removal of top-ranking features resulted in a
significant decline in prediction accuracy. While the full-feature model achieved an R² of 0.9882, the models excluding the
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top 4, 14, and 24 features yielded R² scores of 0.9778, 0.4838, and 0.2669, respectively, highlighting the critical role of the
top 14 features in maintaining model reliability. 

In conclusion, this study demonstrates that integrating high-resolution GIS reanalysis data with interpretable machine
learning approaches provides a powerful framework for river stage prediction, particularly in data-scarce regions. The
findings support the application of such methods in real-time flood forecasting and water resource planning in ungauged or
poorly instrumented basins. Future work may explore a variety of catchment areas to evaluate geological and spatial effects,
as well as the integration of additional GIS-derived features and advanced deep learning architectures to further enhance
prediction accuracy and spatial generalizability.
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