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Abstract - Accurate prediction of nanofluid density is crucial for enhancing heat transfer efficiency in energy systems, such as solar
thermal and geo-thermal systems. However, existing nanofluid models often fail to capture the interactions of hybrid nanoparticles in
hybrid base fluid. This study experimentally investigates the density behavior of single, bi-hybrid, and ternary-hybrid nanofluids and
applies machine learning models to improve predictive accuracy. The nanofluids composed of Al₂O₃, Fe₃O₄, and MWCNT nanoparticles
synthesized in deionized water (DIW), ethylene glycol (EG), and DIW-EG mixtures. Density measurements were conducted at
temperature (10°C < T < 50°C) and nanoparticle volume fractions (0 vol%  < ϕ <  6.0 vol%) using a simple glass pycnometer. Linear
Regression was employed for density prediction, while Random Forest, Support Vector Machine (SVM), and Gradient Boosting were
selected for classification due to their robustness to non-linear relationships and high interpretability. These models were assessed using
accuracy and F1-score, with Gradient Boosting and Random Forest achieving the best performance (>94% accuracy). Results showed
that single nanofluids (Al₂O₃-based) exhibited density variations influenced by temperature and volume fraction. Bi-hybrid nanofluids
(Al₂O₃-MWCNT) had higher densities due to MWCNT reinforcement. Ternary-hybrid nanofluids (Al₂O₃-MWCNT-Fe₃O₄) displayed the
highest densities, particularly in EG-based mixtures, attributed to high density Fe₃O₄ nanoparticle and that of EG. Feature importance
analysis confirmed volume fraction and base fluid composition as dominant factors influencing the density of the nanofluids. By
integrating experimental data into machine learning algorithms, this study improves nanofluid density prediction, offering insights for
optimizing thermal management in energy and industrial systems. 
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1. Introduction
Nanofluids are suspensions of nanoparticles within base fluids and have emerged as a promising class of materials due

to their superior thermo-physical properties compared to conventional fluids [1]. Their enhanced properties, which include
increased thermal conductivity, specific heat capacity, and density, position nanofluids as ideal heat transfer medium for
applications in engineering systems such as cooling devices [2], heat exchangers [3], [4], and renewable energy technologies
[5], [6]. Among these properties, effective density plays a pivotal role in determining the performance and efficiency of
nanofluid-based thermal systems.

The density of a nanofluid is a critical parameter that interacts with other thermophysical properties, particularly
thermal conductivity, viscosity, and specific heat capacity, to determine its overall heat transfer performance [7]–[9]. In
thermal energy systems, density directly influences fluid motion, affecting buoyancy-driven convection, thermal
stratification, and pumping power requirements [10]–[12]. A higher-density nanofluid can enhance thermal storage capacity
and promote better mixing, leading to improved convective heat transfer. However, increased density often correlates with
higher viscosity, which can elevate pumping power demands and impact flow stability. While thermal conductivity is often
the primary focus in nanofluid research, its effectiveness is significantly influenced by density-driven fluid motion [13]–[15].

Additionally, density of a nanofluid plays a key role in nanoparticle stability and sedimentation, which are factors that
determine the long-term usability of nanofluids [16]–[18]. Given the interdependence of these properties, selecting an optimal
nanoparticle composition and base fluid combination is essential for balancing thermal efficiency with practical system
constraints [19], [20]. Despite its significance, density has been relatively underexplored compared to thermal conductivity
and viscosity, particularly in hybrid nanofluids where multiple nanoparticle or base fluid interactions further complicate
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thermophysical behavior. This study focuses on density as a fundamental property governing nanofluid performance, aiming
to enhance its predictive modeling using experimental data and machine learning techniques

The classical mixing rule/model is a widely used approach in nanofluid research, which assumes a linear combination
of the densities of nanoparticles and base fluid weighted by their volume fractions as proposed by Nielsen [21]. The mixing
rule was first reportedly used in the work of Pak and Cho [22]. While convenient to use, this model often fails to accurately
account for non-ideal behaviors such as nanoparticle clustering, void formation, and nanolayer effects at higher
concentrations. Also, it doesn’t account for the influence of temperature on the density of the nanofluid. Several modified
forms of this model have been provided in literature as summarized on Table 1.

While earlier studies such as Sharifpur et al. [23] and Selvakumar et al. [24]  presented theoretically modified mixing
(Pak and Cho) model for density of nanofluids, which is only a function of the nanoparticle volume fraction; recent studies
utilize statical and artificial intelligent tools to model fitted correlation for the density of respective nanofluids as a function
of volume fraction and temperature. Sharifpur et al. [23] investigated the density of nanofluids experimentally, considering
SiO₂-water, MgO-glycerol, CuO-glycerol, and SiO2-ethylene glycol/water mixtures for nanoparticle volume fractions of
1%–6% and temperatures ranging from 10°C to 40°C. The study demonstrated that the widely used mixing model for density
overestimates experimental values, particularly at higher nanoparticle concentrations. This discrepancy was attributed to the
influence of nanolayer thickness (tv), an interfacial layer with density between the base fluid and void density. A new density
model incorporating the nanolayer's equivalent void thickness was developed, showing strong agreement with experimental
data and outperforming the mixing model, especially for volume fractions above 1%. The study also highlighted that void
thickness in the nanolayer is more sensitive to nanoparticle size than to base fluid or nanoparticle material.  

Similarly, Selvakumar et al. [24] proposed a comprehensive model to predict the effective density of nanofluids,
incorporating the effects of nanoparticle clustering and interfacial layer formation. Using Particle Size Distribution (PSD)
analysis, the study explicitly calculated the densities of primary nanoparticles and their clusters, considering the interfacial
layer with a thickness of ~2 nm and a density ~25% higher than the base fluid. The model integrates these factors into a
modified mixture rule to account for increased effective volume fraction due to the interfacial layer. Validation against
experimental data revealed that the new model consistently outperformed the traditional mixture rule, with percentage
deviations as low as 0.12%, compared to up to 25.19% in the mixture rule, highlighting its superior accuracy for nanofluids
in practical heat transfer applications. 

Montazer et al. [25] proposed a new density correlation for carbon-based nanofluids using Response Surface
Methodology (RSM). Experiments on MWCNT–COOH and F-GNP nanofluids, conducted at mass concentrations up to
0.1% and temperatures between 20–40 °C, showed density increases with mass concentration and decreases with
temperature. The RSM quadratic model accurately predicted densities, with maximum deviations of 0.012% for
MWCNT–COOH and 0.009% for F-GNP nanofluids. Notably, MWCNT–COOH nanofluids showed a 0.15% density
increase at 0.1% concentration, while F-GNP nanofluids exhibited a 0.056% rise compared to base fluids. These results
highlight the model's precision and its applicability in optimizing nanofluid-based thermal. Also, Yadav et al. [26] conducted
an experimental and regression analysis to study density variations in Al2O3/EG, CuO/EG, and CeO2/EG nanofluids across
concentrations (0.2–1.5 vol%) and temperatures (20–80°C). The study revealed a linear relationship between density,
concentration, and temperature. High-accuracy plane equations were developed for each nanofluid, achieving correlation
coefficients (R²) near 0.999 for Al2O3 and CeO2 nanofluids, with slightly lower accuracy for CuO/EG due to surfactant
effects. These equations enable direct density predictions without requiring base fluid or nanoparticle density data,
simplifying density estimation for various nanofluids in thermal and tribological applications

Akilu et al. [27] characterized and modeled the density, thermal conductivity, and viscosity of TiN nanofluids (NFs)
with water-ethylene glycol (W/EG) base mixtures at 60:40 and 40:60 ratios using Microsoft Excel with the aid of
Levenberg–Marquardt algorithm. Experiments were conducted for volume fractions of 0.25–1.0% and temperatures between
20°C to 40°C. Results showed that density and viscosity decrease with temperature, while thermal conductivity increases
with nanoparticle concentration. The W/EG 60:40 mixture achieved a thermal conductivity enhancement of up to 22.5%,
whereas the 40:60 mixture exhibited a viscosity increase of 34.3%. Empirical correlations for these properties, accounting
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for temperature and concentration, predicted results with deviations within ±15%, offering practical utility in thermal
engineering applications. 

Artificial Intelligence algorithms, such as Machine Learning and Deep Learning have demonstrated significant
potential in capturing complex relationships among nanofluid properties. Shoghl et al. [28] utilized a multilayer perceptron
neural network (MLPNN) in MATLAB to generate nonlinear mathematical models which predicts the viscosity and density
of Al2O3/DW, MWCNT/DW, and GNP/DW nanofluids. Experimental measurements were conducted for volume
concentrations of 0.1–1% and temperatures of 30–80°C. Results showed viscosity and density increased with concentration
and decreased with temperature, with maximum increases of 41.59% and 5.06% for Al2O3/DW. The MLPNN model,
optimized at 12 perceptron using the Levenberg-Marquardt algorithm, achieved R² > 0.998, outperforming the mathematical
model (R² > 0.9723) with minimal errors (< 0.2% for density and < 1% for viscosity). Similar Machine/Deep learning
techniques have been utilized in the works of  Said et al. [29], [30] and Deymi et al. [31]; although no mathematical
expressions for density were provided in these studies. These advancements highlight the value of integrating experimental
measurements with artificial intelligence to enhance prediction accuracy and model reliability. 

Meanwhile, Chavan and Pise [11] experimentally demonstrates how nanoparticle concentration and temperature
influence the effective viscosity and density of nanofluids, revealing that viscosity increases with concentration and decreases
with temperature, while density increases with concentration and remains largely unaffected by temperature. Similar outcome
are reported in other works by Vajjha et al. [32], Shoghl et al. [28], Jamei et al. [33], and Yousefi and Amoozandeh [34].

Hybrid nanofluids, which combine two or more types of nanoparticles within a single base fluid, offer enhanced
thermo-physical properties due to synergistic effects [9], [35]. Hybrid nanofluid have been used in several studies involving
internal forced convection [36], [37], external forced convection [10], [38], natural convection [39], [40] and mixed
convection [41], [42] and they out performance single nanofluid both in stability and thermal conductivity. However, the
complexity introduced by interactions between different nanoparticles and the base fluid necessitates advanced modeling
techniques [43]. This complexity underscores the need for comprehensive experimental and statistical investigations.

Table 1:   Summary of some Density Models in Literature
Authors Nanofluids Study Effective Density Models

Nielsen 
(1978) [21]

Classical 
Mixing rule for
two-phase 
mixture

Theoretical ρnf =  ρbf 1 − φ +  φρp 

Sharifpur et
al. (2016)
[23] 

SiO2/H2O, 
MgO/Gly, 
CuO/Gly, 
SiO2/EG/H2O
(1<φ < 6 
vol%)

Experimental &
Theoretical ρnf =  

ρbf 1 − φ +  φρp
1 − φ +  φ rp − tv 3/rp3

Selvakuma
r and Wu
(2019) [24]

Al2O3/H2O, 
/PoE, 
MWCNT/oil, 
ZnO/PoE 
(0.001<φ <
0.150 wt%)

Theoretical

ρnfpp =  
ρl rpp + δ 3 +  rpp3ρp − rpp3ρl

rpp + δ 3

ρnfcc =  
ρl rcc + δ 3 +  rcc3ρp − rcc3ρl

rcc + δ 3

ρnf =  ρbf 1 − φeff +  φccρnfcc + φppρnfpp
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Montazer et
al. (2018)
[25]

MWCNT/H2O,
GNP/ H2O
(0.025<φ < 0.1
wt%; 20 oC 
<T<40oC)

Experimental & RSM

ρnf =  − 0.00443T2 − 0.096φT − 0.02468T + 18.40φ
+ 1000.15
{For MWCNT/H2O }

ρnf =  − 0.00518T2 + 25.6φ2 − 0.0184φT + 0.01741T
+ 2:456φ + 999:886
{For GNP/ H2O}

Akilu et al.
(2020) [27]

TiN/ H2O-EG 
(60:40) 
(0.25<φ < 1.0 
vol%; 20 oC 
<T<40oC)

Experimental & Excel 
(Levenberg–Marquard
t algorithm)

ρnf

=  ρbf 1.121
φp

100
0.01882 ×

Tnf
333.15

− 0.04674 × BR0.005495

Yadav et al.
(2021) [26]

Al2O3/EG 
(13nm & 
50nm), 
CuO/EG, 
CeO2/EG 
(0.2<φ < 1.5 
vol%; 20 oC 
<T<80oC)

Experimental & RSM

ρnf =  ρo + Aφ + BT

ρnf =  1.12809 +  0:02693φ − 0.000688095T 
{For Al2O3 / EG (13nm)}

ρnf = 1.128 +  0.05944 φ − 0.000690293T 
{For CeO2 / EG (25nm)}

Singh &
Ghosh. 
(2022)  [44]

AL2O3/DIW, 
GNP/DIW, 
MWCNT/DI
W
(0.1< φ <1 
vol%, 30< T 
<80oC)

Experimental & ANN ρnf =  ρbf(α1 + α2 × φ + α3 × T +  α4 × T × φ

This study addresses gaps in the existing literature by experimentally measuring the density of single and hybrid nanofluids
composed of Al₂O₃, Fe₃O₄, and multi-walled carbon nanotubes (MWCNTs) in various base fluids, including water, ethylene
glycol, and water-ethylene glycol mixtures. The hybrid nanofluids will be considered at temperature (10°C < T < 50°C) and
nanoparticle concentrations (0 < φ < 6 vol%). Machine learning algorithms will be used to generate correlations between the
nanofluids density and its independent variables i.e. temperature, and nanoparticle concentrations and percentage of
ethylene glycol in base fluid. The sensitivity of the nanofluids to respective variables will be carried out . By integrating
experimental measurements with advanced machine learning techniques, this research aims to establish a robust framework
for accurately predicting the density of both single and hybrid nanofluids. The outcomes will not only fill critical gaps in
literature but also provide practical insights for the optimization and simulation of nanofluid related design and application in
thermal energy systems, paving the way for future innovations in renewable energy and advanced heat transfer technologies.

2. Materials and Methodology
2.1 Nanoparticle and morphological properties

This study employed nanofluids prepared using Aluminum (III) oxide (Al₂O₃, 20–30 nm), Iron (III) Oxide (Fe₃O₄, 20–30
nm), and Multi-Walled Carbon Nanotubes (MWCNT, <7 nm) via the two-step preparation method outlined in prior studies
[45], [46]. Single nanofluids were formulated by dispersing Al₂O₃ nanoparticles in deionized water (DIW), ethylene glycol
(EG), and a 50:50 mixture of DIW and EG, using Sodium Dodecyl Benzene Sulfonate (SDBS) as a surfactant. Bi-hybrid
nanofluids were prepared by combining Al₂O₃ and MWCNT nanoparticles in a 60:40 ratio, dispersed in the same base fluids
with Sodium Dodecyl Sulfonate (SDS) to enhance stability. Ternary hybrid nanofluids were created using Al₂O₃, MWCNT,
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and Fe₃O₄ nanoparticles in a 1:1:1 ratio, dispersed in the same base fluids and stabilized with Gum Arabic (GA) to prevent
agglomeration. Table 2 summarizes the composition of the nanofluid samples considered in this study.

Different surfactants were used for the different nanofluid samples, based on stability studies reported in previous
studies by this authors and other researchers who have worked on the synthesis of Al₂O₃, Fe₃O₄ , and multi-walled carbon
nanotubes (MWCNTs) and their hybrids in various base fluids [14], [38], [39], [47].

The morphology of the nanoparticles was examined using a Zeiss Crossbeam 540 FEG-SEM at the University of
Pretoria's Microscopy Department. Morphological images captured at a magnification of 100 KX (Figure 1) revealed that
Al₂O₃ nanoparticles exhibited spherical shapes with cloud-like agglomerates, Fe₃O₄ displayed a combination of spherical and
plate-like structures, and MWCNT showed a tubular configuration. These morphological characteristics are consistent with
findings reported in existing literature.

To ensure uniform dispersion and stability, the prepared nanofluids underwent magnetic stirring for 30 minutes at a
fixed speed, followed by ultrasonication for 1 hour using a Qsonica (Q-700) sonicator operating at 90% amplitude within a
temperature-controlled bath maintained at 20°C. A preliminary physical inspection confirmed the stability of the nanofluids
prior to further measurements.

Table 2:   Composition of Nanofluid Samples

Nanofluid Sample Nanoparticles
Base 

Fluid Surfactant

A Al₂O₃ DIW SDBS

B Al₂O₃ EG SDBS
Single 

nanofluid
C Al₂O₃ EG-DIW SDBS

D Al₂O₃-MWCNT DIW SDS

E Al₂O₃-MWCNT EG SDS
Bi-Hybrid 

nanofluid
F Al₂O₃-MWCNT EG-DIW SDS

G
Al₂O₃-MWCNT- 

Fe₃O₄ DIW GA

H
Al₂O₃-MWCNT- 

Fe₃O₄ EG GATernary Hybrid

I
Al₂O₃-MWCNT- 

Fe₃O₄ EG-DIW GA
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                                          (a)                                        (b)

   
(c)    

Figure 1:   Morphological Image of (a) Al₂O₃ (b) MWCNT (c) Fe₃O₄ at Magnification of 100KX

2.2 Experimental Procedure

The mass of the nanofluid was measured using a Radwag PS750 R2 weighing scale, which has a sensitivity of 0.001g
and linearity of ± 3.000mg. The volume of the nanofluid was accurately determined using a corked glass pycnometer in the
Gay-Lussac pattern, with a fixed volume of 50.448 cm³. The density was calculated as the ratio of the measured mass of the
fully filled pycnometer to its fixed volume. 

To ensure accurate and consistent density measurements of nanofluid samples, the process began with careful
temperature control. The nanofluid samples were placed into small, labeled sample holders, which were then arranged on a
rack and fully submerged in a thermal bath set to the desired temperature. This setup ensured the samples reached thermal
equilibrium with the bath, verified using a mercury-in-glass thermometer. Once equilibrium was achieved, individual samples
were removed and prepared for measurement using the pycnometer (density bottle).

The density bottle was first cleaned, dried, and weighed to determine its empty mass. It was then filled with the
nanofluid sample, taking care to avoid trapping air bubbles. The neck of the bottle was filled to about one-third of its capacity,
and the cork or stopper was aligned and inserted. The bottle allows the capillary tube in the stopper to fill up and excess liquid
with air bubble escapes. The spill over is gently wiped off.  To maintain the desired temperature, the filled bottle was re-
inserted into the thermal bath. After the temperature adjustment, the bottle's outer surfaces were thoroughly dried with tissue
to remove any displaced liquid.
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Finally, the filled density bottle was weighed using a high-precision weighing balance to obtain the required data for
density calculations. Each measurement was repeated three times for all samples under different experimental conditions
(temperature and volume fraction), and the average value of the three trials was recorded as the measured density. This
approach ensured consistency and minimized measurement uncertainties. All steps were carefully executed to reduce errors
and prevent contamination of the bottle or sample. By strictly adhering to this methodology, the integrity and reliability of the
measurements were preserved, providing accurate data for subsequent analysis. The recorded data were first processed in
Excel and then visualized using Origin Plot software, as illustrated in Figure 2. 

Figure 2:   Schematics of Experimental Procedure

2.3 Data Reduction and Uncertainty Analysis

The density of the fluid was determined by measuring the mass and using the fixed volume of the pycnometer. The
relationship between the measured mass (m), density of the nanofluid (ρ), and known volume of the pycnometer (V) is given
in Equation 1. 

 흆 =  mV           (1)
Uncertainty analysis for the measured mass and calculated density was obtained using the approach described by Moffat

[48] Kline [49] and Atofarati et al. [38]. The estimation of δxi (휹m & 휹V) for the mass and volume were accounted using both
bias (b) and precision (p) errors. This analysis was carried out with the "Uncertainty" function in Python, which calculates
uncertainties at a 95% confidence level. The uncertainty in mass was ± 3.17 ×10-3 g, while that of density was ± 2.20×10-5

g/cm³.
훅xi =  bi

2 + pi
2 1/

2      (2)

            훅D =  훅D
휹m ×  훛 m 2 + 훅D

휹V ×  훛 V 2 1/
2          (3)

2.4 Machine Learning Approach
The machine learning analysis for this study was conducted using Python's Jupyter Notebook to develop predictive

models and classify nanofluid density based on key independent variables: temperature, nanoparticle volume fraction, and
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base fluid composition (including ethylene glycol and deionized water mixtures). The data obtained from experimental
measurement was used for both regression and classification analysis following the methodologies explained in previous
studies by Atofarati et al.[50]  Awe et al. [51] and Adogbeji et al. [52]. 

The workflow began with data restructuring, cleaning and then the implementing of a linear regression model to predict
nanofluid density by capturing the relationships between independent variables. To ensure robust model evaluation, the
dataset was split into 80% training data and 20% testing data, with the training set used to develop predictive models and the
testing set for assessing generalization performance. Model effectiveness was measured using Mean Absolute Error (MAE),
R², Accuracy, and F1 Score.

In addition to regression modeling, a classification analysis was conducted to categorize nanofluid density using five
widely recognized machine learning algorithms: Support Vector Machine (SVM), Random Forest, Logistic Regression,
Gradient Boosting, and LightGBM. These models were selected due to their proven effectiveness in handling non-linear
relationships, robustness to overfitting, and interpretability across engineering datasets. These analyses provided insights
into the relative influence of temperature, volume fraction, and base fluid composition on nanofluid density, helping to identify
key contributing factors.  
3. Experimental Results
3.1 Validation of base fluid density

Prior to determining the density of the nanofluids, the measured density of the base fluids was validated against
established literature data as presented in Figure 3. The density of deionized water was cross-referenced with values
provided in the renowned textbook Heat and Mass Transfer by Çengel et al.  [53]. The comparison revealed a perfect match,
as the density-temperature graphs from both sources overlapped consistently across the temperature range.

For the ethylene glycol and deionized water mixture (50:50 by volume), the measured densities were compared with
data reported by Bohne et al. [54]. The results demonstrated close alignment, with only minor deviations observed at higher
temperatures. These minor discrepancies fall within acceptable experimental tolerances. Typically, Figure 3 shows that the
density of ethylene glycol was highest, followed by that of ethylene glycol-water mixture, and then De-ionized water. Also, the
density of the base fluids is proportionally reduced with temperature increase.

Given the strong agreement between our measurements and the benchmark data for both deionized water and the
ethylene glycol-water mixture, the validation establishes the reliability of the experimental setup. Consequently, we proceeded
with the density measurements for the nanofluids.

3.2 Experimental results

The measured density of nanofluids is categorized into three systems: single nanofluids, bi-hybrid nanofluids, and
ternary-hybrid nanofluids. For each case, the effects of the ethylene-glycol (EG) percentage in the base fluid (0%, 50%, and
100%) are examined. The variations in density with respect to temperature and nanoparticle volume fraction are analyzed
and reported in detail.
3.2.1 Single nanofluid (Al₂O₃ nanofluids)

The density of nanofluids containing Al₂O₃ nanoparticles was determined for three base fluids: pure deionized water
(DIW), ethylene glycol (EG), and a 50:50 mixture of DIW and EG. Figure 4 illustrates the density variations for Al₂O₃/DIW,
Al₂O₃/EG, and Al₂O₃/DIW-EG nanofluids as functions of temperature (10–50 °C) and nanoparticle volume fraction (0.5%,
1%, 2%, 4%, and 6%).

The experimental results revealed a nearly linear decrease in density with increasing temperature for all the nanofluid,
reflecting the typical thermal expansion behavior of liquids. Among the nanofluids, the Al₂O₃/DIW nanofluids exhibited a
smaller slope in the density-temperature relationship compared to Al₂O₃/EG and Al₂O₃/DIW-EG nanofluids. This suggests a
more stable density response with temperature for DIW-based nanofluids.

The density of all nanofluids increased with nanoparticle volume fraction, attributed to the higher density of Al₂O₃
nanoparticles compared to the base fluids. However, the extent of density increases with volume fraction varied among the
base fluids. For Al₂O₃/DIW nanofluids, the density showed consistent increases across all volume fractions, with the most
pronounced effect at 6 vol%. In contrast, for Al₂O₃/EG nanofluids, significant density changes were observed only at higher
volume fractions (e.g., 4 vol% and 6 vol%), while the increase was relatively minor at lower volume fractions (e.g., 0.5 vol%
to 2 vol%).
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Figure 3: Validation of Measured Base Fluid Density with Literature Results

The Al₂O₃/DIW-EG nanofluids demonstrated intermediate behavior, with density values falling between those of the
Al₂O₃/DIW and Al₂O₃/EG nanofluids. This trend highlights the combined effects of the two base fluids in influencing nanofluid
density. Overall, the density variations of the nanofluids followed trends like those of the base fluids, decreasing with
temperature and increasing with nanoparticle volume fraction. These findings are consistent with theoretical predictions and
underscore the critical role of nanoparticle dispersion and base fluid properties in determining nanofluid density.

3.2.2 Bi-hybrid nanofluid (Al₂O₃-MWCNT nanofluids)

The relationship between density and temperature for Al₂O₃-MWCNT/DIW nanofluids, Al₂O₃-MWCNT/DIW-EG
nanofluids, and Al₂O₃-MWCNT/EG nanofluids across a range of nanoparticle volume fractions (0 vol% < φ < 6 vol%) is
presented in Figure 5. The density variations were evaluated as a function of temperature (10–50 °C). The results reveal
distinct trends influenced by the type of base fluid and the combined contribution of Al₂O₃ and MWCNT nanoparticles.

For all base fluids, the density of the bi-hybrid nanofluids decreases approximately linearly with increasing temperature,
consistent with the thermal expansion behavior typically observed in single nanofluids. This linear trend highlights the
dominant influence of the base fluid's properties on the temperature-dependent behavior of the nanofluids. Additionally, the
density increases with nanoparticle volume fraction, reflecting the higher density of Al₂O₃ and MWCNT nanoparticles
compared to the base fluids.

The bi-hybrid nanofluids exhibit trends like single nanofluids, showing a nearly linear decrease in density as temperature
increases. Additionally, density increases proportionally with rising nanoparticle volume fraction, indicating that higher
concentrations of nanoparticles contribute to greater fluid density. The properties of the base fluid also play a significant role,
with DIW-based nanofluids displaying the lowest density values, while EG-based nanofluids exhibit the highest densities due
to the inherently higher density of ethylene glycol.
Despite these similarities, notable differences arise from the inclusion of MWCNT in the bi-hybrid system, leading to higher
density values across all base fluids compared to single nanofluids. This increase is attributed to the combined mass
contribution of Al₂O₃ and MWCNT nanoparticles. In DIW-based nanofluids, Al₂O₃-MWCNT nanofluids consistently exhibit
higher density than single nanofluids, with this effect becoming more pronounced at higher volume fractions, such as 6 vol%.

For EG-based nanofluids, the bi-hybrid nanofluids achieve the highest density among the three base fluids, further
enhanced by the inherently dense EG base fluid. Meanwhile, in DIW-EG mixture nanofluids, the density values fall between
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those of DIW and EG-based nanofluids, following trends observed in single nanofluids. However, the addition of MWCNT
significantly increases density compared to Al₂O₃-only nanofluids, emphasizing the impact of nanoparticle selection on
nanofluid density.

The results demonstrate that bi-hybrid nanofluids exhibit superior density values compared to their single nanofluid
counterparts. The synergistic effect of Al₂O₃ and MWCNT nanoparticles enhances the mass contribution and dispersion
characteristics within the base fluids, leading to improved density properties. These findings underscore the potential of bi-
hybrid nanofluids in applications where enhanced thermal and physical properties are critical.

In summary, the bi-hybrid nanofluids preserve the temperature-density and volume fraction-density trends of single
nanofluids while introducing significant improvements, particularly at higher nanoparticle concentrations and with denser base
fluids.

Figure 4:   Experimentally Measured Density for (a) Al₂O₃/DIW Nanofluids, (b) Al₂O₃/DIW-EG Nanofluids and (c) Al₂O₃/EG 
Nanofluids as a Function of Temperature and Volume Fraction.
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Figure 5:   Experimentally Measured Density for (a) Al₂O₃-MWCNT/DIW Nanofluids, (b) Al₂O₃-MWCNT/DIW-EG Nanofluids and 
(c) Al₂O₃-MWCNT/EG Nanofluids as a Function of Temperature and Volume Fraction

3.2.3 Ternary nanofluids (Al₂O₃-MWCNT-Fe₃O₄ nanofluids) 

Figure 6 illustrates the variation in density as a function of temperature (10–50 °C) and nanoparticle volume fractions
(0.5%, 1%, 2%, 4%, and 6%) for Al₂O₃-MWCNT-Fe₃O₄ nanofluids with DIW, EG, and DIW-EG as base fluids. The inclusion
of Fe₃O₄ nanoparticles in the Al₂O₃-MWCNT system introduces significant changes to the density behavior compared to
single and bi-hybrid nanofluids. 

The ternary-hybrid nanofluids exhibit distinct density trends across different base fluids. For all three base fluids, density
decreases almost linearly with increasing temperature, a behavior consistent with the thermal expansion properties observed
in single and bi-hybrid nanofluids. Additionally, an increase in nanoparticle volume fraction results in a proportional rise in
density, as expected due to the higher density of the nanoparticles compared to the base fluids. Among the three systems, the
density values are lowest in deionized water (DIW) due to its relatively lower density compared to ethylene glycol (EG) and
DIW-EG mixtures, as shown in Figure 6a. In contrast, ternary-hybrid nanofluids prepared with EG as the base fluid exhibit
the highest density values across all volume fractions, attributed to the inherently higher density of EG (Figure 6b). The
density of nanofluids using the DIW-EG mixture as the base fluid falls between the two extremes, reflecting the combined
influence of DIW and EG properties (Figure 6c). Despite variations in composition, a linear relationship between density and
temperature remains a common feature across all nanofluid types. Moreover, density consistently increases with higher
nanoparticle volume fractions, regardless of the level of hybridization or the choice of base fluid.

The introduction of Fe₃O₄ nanoparticles in the ternary-hybrid system significantly enhances the density values compared
to single and bi-hybrid nanofluids, primarily due to the high density of Fe₃O₄. For DIW-based ternary-hybrid nanofluids, the
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density values surpass those of single and bi-hybrid systems at all volume fractions, with the improvement most pronounced
at higher concentrations (e.g., 6 vol%). Similarly, the EG- and DIW-EG-based ternary-hybrid nanofluids also achieve higher
density values than their single and bi-hybrid counterparts, underscoring the additive effect of Fe₃O₄ nanoparticles.

The density values of ternary-hybrid nanofluids show a marked improvement over single and bi-hybrid systems across
all base fluids. In DIW-based nanofluids, there is a noticeable enhancement in density, effectively bridging the gap with the
higher-density EG systems observed in single and bi-hybrid cases. For EG-based nanofluids, the highest density values are
maintained, with further amplification due to the ternary-hybrid nanoparticle configuration. Similarly, nanofluids based on
the DIW-EG mixture exhibit consistently higher density values than their bi-hybrid counterparts, highlighting the synergistic
effect of Fe₃O₄ in the hybrid system

The ternary-hybrid nanofluids exhibit significant density enhancements compared to single and bi-hybrid systems,
attributable to the combined mass contribution of Al₂O₃, MWCNT, and Fe₃O₄ nanoparticles. The choice of base fluid plays
a critical role in determining the absolute density values, with EG-based nanofluids achieving the highest and DIW-based
nanofluids the lowest. These results emphasize the impact of nanoparticle hybridization and base fluid selection on optimizing
the density of nanofluids, which is crucial for tailoring their properties for specific thermal management applications.

The density of ternary-hybrid nanofluids containing Al₂O₃, MWCNT, and Fe₃O₄ nanoparticles was evaluated for DIW,
EG, and DIW-EG base fluids. Figure 6 illustrates the density variations as functions of temperature (10–50 °C) and
nanoparticle volume fractions (0.5%, 1%, 2%, 4%, and 6%).

Impact of Temperature
Ternary-hybrid nanofluids exhibited a nearly linear decrease in density with increasing temperature, a trend consistent

with single and bi-hybrid nanofluids. The temperature-density relationship was primarily influenced by the properties of the
base fluid. DIW-based nanofluids displayed the lowest density values across the temperature range, while EG-based
nanofluids achieved the highest densities due to the inherently dense nature of EG. Meanwhile, DIW-EG-based nanofluids
exhibited intermediate density values, reflecting the combined influence of DIW and EG properties.

Impact of Volume Fraction
The incorporation of Fe₃O₄ nanoparticles significantly increased the density of ternary-hybrid nanofluids compared to

single and bi-hybrid systems. In DIW-based nanofluids, density values surpassed those of single and bi-hybrid systems across
all volume fractions, with the most notable enhancement observed at 6 vol%. For EG-based nanofluids, the ternary-hybrid
configuration maintained the highest density values, further reinforced by the inherently dense EG base fluid. Similarly,
DIW-EG-based nanofluids exhibited consistently higher density values than their bi-hybrid counterparts, demonstrating the
additive effect of Fe₃O₄ nanoparticles in enhancing overall density.

The results highlight the combined mass contributions of Al₂O₃, MWCNT, and Fe₃O₄ nanoparticles, which significantly
enhance density properties. The choice of base fluid critically determines the absolute density values, with EG-based systems
achieving the highest and DIW-based systems the lowest.

4. Machine Learning Results
4.1 Predictive model performance

The machine learning analysis using linear regression models for Al₂O₃ nanofluids, Al₂O₃-MWCNT nanofluids, and Al₂O₃-
MWCNT-Fe₃O₄ nanofluids demonstrated a strong correlation between actual and predicted density values, as summarized in Figures 7,
8, and 9. These models employed temperature (T), nanoparticle volume fraction (φ), and the percentage composition of ethylene glycol
in the base fluid (BF) as independent variables to predict nanofluid density (ρ). The correlations derived are summarized in Table 3.

Al₂O₃ Nanofluids
For Al₂O₃-based nanofluids, the linear regression models achieved high predictive accuracy, as evidenced by the R² values and low

Mean Squared Error (MSE). Sample A (DIW-based) exhibited an R² of 0.99897 and a minimal MSE of 0.0000035, as shown in Figure
7(a), indicating excellent model performance. For Sample B (EG-based) and Sample C (DIW-EG mixture), the R² values were 0.96271
and 0.89990, respectively, with slightly higher errors due to the increased complexity of the fluid systems (Figure 7(b) and 7(c)). These
models achieved accuracy levels of 99.9%, 96.3%, and 90.0% for Samples A, B, and C, respectively, confirming their reliability in
estimating nanofluid densities.
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A generalized model encompassing all three base fluids was developed, incorporating the ethylene glycol percentage in DIW as
the BF variable, as shown in Figure 7(d). This generalized model achieved an accuracy of 96.05% with an MSE of 0.0001605,
highlighting its capability to predict density variations across diverse base fluids.

Al₂O₃-MWCNT Nanofluids
For Al₂O₃-MWCNT nanofluids, the models effectively captured the relationship between density and the independent variables,

achieving R² values of 0.98250, 0.96900, and 0.91399 for Samples D, E, and F, respectively, as illustrated in Figures 8(a), 8(b), and
8(c). The corresponding accuracy levels were 98.3%, 96.9%, and 91.4%, indicating reliable performance across different base fluids.

A generalized model for these nanofluids, shown in Figure 8(d), used BF as an independent variable and achieved an accuracy
of 93.49% with an MSE of 0.0002732. This demonstrates the model’s ability to predict density for various base fluid compositions
effectively.

Al₂O₃-MWCNT-Fe₃O₄ Nanofluids
In the case of Al₂O₃-MWCNT-Fe₃O₄ nanofluids, the regression models provided high predictive accuracy, with R² values of

0.9826, 0.9706, and 0.9805 for Samples G, H, and I, respectively, as depicted in Figures 9(a), 9(b), and 9(c). These models achieved
negligible MSE values, highlighting their robustness in handling complex nanofluid systems.

A generalized model for Al₂O₃-MWCNT-Fe₃O₄ nanofluids, shown in Figure 9(d), incorporated BF as a variable and achieved an
accuracy of 88.80% with an MSE of 0.0003890. This result reflects the model’s capability to adapt to diverse base fluid compositions
while maintaining reasonable predictive performance.

 

Figure 6:   Experimentally Measured Density for (a) Al₂O₃-MWCNT- Fe₃O₄ /DIW Nanofluids, (b) Al₂O₃-MWCNT- Fe₃O₄ /DIW-EG 
Nanofluids and (c) Al₂O₃-MWCNT- Fe₃O₄ /EG Nanofluids as a Function of Temperature and Volume Fraction
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Table 3:   Summary of Density Model/Correlation for this study

Sample Nanofluids Obtained Predictive Model Accuracy  Modified Pak & Cho model

A Al₂O₃/DIW (SDBS) ρ = − 0.0002T + 0.0275φ + 1.0050 99.9%

ρnf = ρbf.φbf + ρnp.φnp

Where: 
φbf + φnp = 1

B Al₂O₃/EG (SDBS) ρ = − 0.0007T + 0.0208φ + 1.1213 96.3%
 
ρnf = ρbf.φbf + ρnp.φnp

C Al₂O₃/DIW-EG (SDBS) ρ = − 0.0006T + 0.0231φ + 1.0656 90.0%

ρnf = ∑
i = 1

2

ρbfi
.φbfi

+ ρnp.φnp

Where: 

∑
i = 1

2

φbfi
+ φnp = 1

A/B/C
Al₂O₃ Nanofluid  
(BF indicating %EG in
DIW)

ρ = − 0.0005T + 0.0238φ + 0.089BF
+ 1.0195 96.1% ρnf = ∑

i = 1

n

ρbfi
.φbfi

+ ρnp.φnp

D Al₂O₃-MWCNT/DIW 
(SDS) ρ = − 0.0002T + 0.0246φ + 0.9902 98.3%

ρnf = ρbf.φbf + ∑
i = 1

2

ρnpi
.φnpi

Where: 
 φbf + ∑2

i = 1φnpi
= 1

E Al₂O₃-MWCNT /EG
(SDS) ρ = − 0.0005T + 0.0169φ + 1.1150 96.9% ρnf = ρbf.φbf + ∑

i = 1

2

ρnpi
.φnpi
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F Al₂O₃-MWCNT/DIW-
EG (SDS) ρ = − 0.0004T + 0.0262φ + 1.0600 91.4%

ρnf =  ∑
i = 1

2

ρbfi
.φbfi

+ ∑
i = 1

2

ρnpi
.φnpi

Where: 
 ∑2

i = 1φbfi
+ ∑2

i = 1φnpi
= 1

D/E/F Al₂O₃-MWCNT ρ = − 0.0004T + 0.0226φ + 0.0983BF
+ 1.0059 93.5%

ρnf =  ∑
i = 1

n

ρbfi
.φbfi

+ ∑
i = 1

n

ρnpi
.φnpi

G Al₂O₃-MWCNT-Fe₃O₄ 
/DIW (GA) ρ = − 0.0003T + 0.0261φ + 0.9934 98.3%

ρnf = ρbf.φbf + ∑
i = 1

3

ρnpi
.φnpi

Where: 
 φbf + ∑3

i = 1φnpi
= 1

H Al₂O₃-MWCNT- Fe₃O₄
/EG (GA) ρ = − 0.0006T + 0.0115φ + 1.1182 97.1% ρnf = ρbf.φbf + ∑

i = 1

3

ρnpi
.φnpi

I Al₂O₃-MWCNT-Fe₃O₄ 
/DIW-EG (GA) ρ = − 0.0005T + 0.0240φ + 1.0722 98.1%

ρnf =  ∑
i = 1

2

ρbfi
.φbfi

+ ∑
i = 1

3

ρnpi
.φnpi

Where:
 ∑2

i = 1φbfi
+ ∑3

i = 1φnpi
= 1

G/H/I Al₂O₃-MWCNT- Fe₃O₄  ρ = − 0.0005T + 0.0205φ + 0.0822BF
+ 1.0196 88.8%

ρnf =  ∑
i = 1

n

ρbfi
.φbfi

+ ∑
i = 1

n

ρnpi
.φnpi
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Figure 7:  Predicted Correlations for Al₂O₃ Nanofluids and Their Performance

Figure 8:   Predicted Correlations for Al₂O₃-MWCNT Nanofluids and Their Performance
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Figure 9:  Predicted Correlations for Al₂O₃-MWCNT-Fe₃O₄ Nanofluids and Their Performance

4.2   Classification and feature importance model analysis
Machine learning models have become indispensable tools for analyzing complex datasets, such as those involving

Al₂O₃-based nanofluids. By leveraging metrics like Mean Absolute Error (MAE), R², Accuracy, and F1-Score, these models
provide a comprehensive evaluation of predictive performance. Higher accuracy and F1-Score signify robust classification
capabilities, while lower MAE and higher R² indicate improved predictive precision and data fit. This study evaluates the
performance of five machine learning models—Support Vector Machine (SVM) with a linear kernel (C=0.1), Random Forest,
Logistic Regression, Gradient Boosting, and LightGBM—and analyzes feature importance using the best-performing models
for three types of nanofluids: single, bi-hybrid, and tri-hybrid.

4.2.1 Single Al₂O₃ Nanofluids
The classification results for single Al₂O₃ nanofluids, visualized in Figure 10 and detailed in Table 4, reveal that

Random Forest, Logistic Regression, Gradient Boosting, and LightGBM achieved high accuracies (~0.9444) and strong
predictive metrics (MAE = 0.0556, R² = 0.7778, F1-Score = 0.9474 to 0.9524). These results underline their reliability in
predicting nanofluid density. In contrast, SVM demonstrated slightly lower performance, with an accuracy of 0.8889, MAE of
0.1111, R² of 0.5556, and F1-Score of 0.8889.

Figure 11 presents the feature importance analysis for Random Forest, Logistic Regression, and LightGBM. The
analysis identified volume fraction as the most significant feature influencing density, followed by base fluid composition
(%EG), with temperature having minimal impact. This consistency across models underscores the critical role of volume
fraction in determining the behavior of Al₂O₃ nanofluids.
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Table 4:   Evaluation Metrics for Models used to Predict Al₂O₃ Nanofluids Data

Model MAE R2 Accuracy F1-
Score

SVM (Linear, C=0.1) 0.111111 0.55 0.888889 0.888889

Random Forest 0.055556 0.775 0.944444 0.947368

Logistic Regression 0.055556 0.775 0.944444 0.947368

Gradient Boosting 0.055556 0.775 0.944444 0.952381

LightGBM 0.055556 0.775 0.944444 0.952381

Figure 10:   Models’ Accuracy Plot for Al₂O₃ Nanofluids Data
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Figure 11: Density’s Variable Sensitivity Plot for Al₂O₃ Nanofluids

4.2.2 Bi-Hybrid Al₂O₃-MWCNT Nanofluids
The performance of the models for bi-hybrid Al₂O₃-MWCNT nanofluids, as summarized in Table 5 and illustrated in

Figure 12, highlights Random Forest as the best-performing model, achieving perfect metrics (Accuracy, R², and F1-Score
= 1, MAE = 0). Logistic Regression and Gradient Boosting also showed strong results, with accuracies of 0.9444, MAE of
0.0556, and F1-Score of 0.9474, demonstrating their reliability as alternatives to Random Forest.

SVM exhibited moderate performance, achieving an accuracy of 0.8889, F1-Score of 0.8889, MAE of 0.1111, and R²
of 0.5556, indicating its limited ability to fully capture dataset variance. LightGBM underperformed compared to the other
models, with the lowest accuracy (0.8333) and F1-Score (0.8421), and the highest MAE (0.1667), suggesting it may require
further optimization. The analysis of the feature importance, shown in Figure 13, confirmed the dominant influence of volume
fraction and base fluid composition on density prediction, while temperature maintained minimal impact.

Table 5:   Evaluation Metrics for Models used to Predict Al₂O₃-MWCNT Nanofluids Data

Model MAE R2 Accuracy F1-
Score

SVM (Linear, C=0.1) 0.111111 0.555556 0.888889 0.888889

Random Forest 0 1 1 1

Logistic Regression 0.055556 0.777778 0.944444 0.947368

Gradient Boosting 0.055556 0.777778 0.944444 0.947368

LightGBM 0.166667 0.333333 0.833333 0.842105
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Figure 12:   Models’ Accuracy Plot for Al₂O₃-MWCNT Nanofluids Data

Figure 13: Density’s Variable Sensitivity Plot for  Al₂O₃-MWCNT Nanofluids  
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4.2.3 Tri-Hybrid Al₂O₃-MWCNT-Fe₃O₄ Nanofluids
The classification results for tri-hybrid Al₂O₃-MWCNT-Fe₃O₄ nanofluids, depicted in Figure 14 and detailed in Table

6, further validate Random Forest as the top-performing model with perfect metrics (Accuracy, R², and F1-Score = 1, MAE =
0). Logistic Regression and Gradient Boosting achieved comparable results, with accuracies of 0.9444, MAE of 0.0556, and
F1-Score of 0.9474. SVM displayed moderate performance, with an accuracy of 0.8889 and R² of 0.5556, while LightGBM
showed the weakest performance (Accuracy = 0.8333, MAE = 0.1667, F1-Score = 0.8421).

Figure 15 highlights the feature importance analysis for Logistic Regression, Random Forest, and SVM, reaffirming
volume fraction as the most critical variable, followed by base fluid composition. Unlike in the previous datasets, temperature
showed a slightly more significant effect on density prediction, emphasizing its nuanced role in the Al₂O₃-MWCNT-Fe₃O₄
dataset.

Across all nanofluids, Random Forest consistently outperformed other models, demonstrating exceptional predictive
accuracy and robustness. Logistic Regression and Gradient Boosting also emerged as reliable alternatives, while SVM and
LightGBM were comparatively less effective. The feature importance analysis consistently identified volume fraction as the
most influential factor, followed by base fluid composition, with temperature playing a secondary role. These findings
underscore the critical role of ensemble-based machine learning models and key features like volume fraction in predicting
nanofluid density, offering a robust framework for optimizing nanofluid properties through predictive modeling.

Table 6:   Evaluation Metrics for the Modelling of Al₂O₃-MWCNT- Fe₃O₄ Nanofluids 

Model MAE R2 Accuracy F1-
Score

SVM (Linear, C=0.1) 0.111111 0.555556 0.888889 0.888889

Random Forest 0 1 1 1

Logistic Regression 0.055556 0.777778 0.944444 0.947368

Gradient Boosting 0.055556 0.777778 0.944444 0.947368

LightGBM 0.166667 0.333333 0.833333 0.842105

Figure 14:   Models’ Accuracy Plot for Al₂O₃-MWCNT- Fe₃O₄ Nanofluids Data
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Figure 15:   Density’s Variable Sensitivity Plot For  Al₂O₃-MWCNT- Fe₃O₄  Nanofluids 

5. Conclusion

This study investigated the density variations of single, bi-hybrid, and ternary-hybrid nanofluids through experimental
measurements and machine learning models. The findings revealed that single Al₂O₃ nanofluids exhibited a linear decrease
in density with increasing temperature and an increase with higher nanoparticle volume fractions. DIW-based nanofluids
demonstrated greater temperature stability, while EG-based systems exhibited higher densities. The introduction of MWCNT
nanoparticles in bi-hybrid nanofluids further enhanced density, with EG-based systems achieving the highest values, followed
by DIW-EG and DIW-based formulations. The addition of Fe₃O₄ nanoparticles in ternary-hybrid nanofluids resulted in a
further increase in density, particularly in EG-based systems and at higher nanoparticle concentrations.

Machine learning models effectively predicted nanofluid density using temperature, nanoparticle volume fraction, and
ethylene glycol percentage as key input variables. Linear regression models demonstrated high predictive accuracy, while
feature importance analysis identified nanoparticle volume fraction and ethylene glycol content as the most influential factors.
Among classification models, Random Forest and logistic regression provided the most robust performance, highlighting
their suitability for nanofluid density prediction.

These findings underscore the significant impact of nanoparticle hybridization on nanofluid density and its implications
for advanced thermal management systems. The integration of machine learning models offers a reliable approach for
predicting density variations, facilitating optimized nanofluid design for renewable energy applications such as solar thermal
and geothermal systems. Future research should explore the scalability of hybrid nanofluids and refine predictive models to
enhance their practical application in energy and industrial systems.
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Nomenclature
T  Temperature
t Thickness 
Greek Characters
φ Volume fraction
ρ Density
δ interfacial thickness
Abbreviations
Al2O3  Alumina oxide
MWCNT Multi-Walled Carbon Nanotube
SDBS Sodium DodecylBenzene Sulfonate
SDBS Sodium Benzene Sulfonate
Fe₃O₄ Iron III Oxide
DIW De-ionized Water
EG Ethylene Glycol
MAE Mean Absolute Error
vol% Volume percentage
Subscripts and superscripts
i initial
f final
n number of item
p particle
pp primary particle
cc complex cluster
nf nanofluid
p particle
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