Magnetite-based nanomedicine for cancer diagnosis and therapy using loco-regional hyperthermia combined with chemotherapy

Shu-Jyuan Yang¹, Shu-Yi Tseng¹, Chung-Hao Wang², Tai-Horng Young¹, and Ming-Jium Shieh¹

¹Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan

image0120@gmail.com; angel01040218@gmail.com; thyoung@ntu.edu.tw; soloman@ntu.edu.tw

²Gene'e Tech Co. Ltd.

2F., No.661, Bannan Rd., Zhonghe Dist., New Taipei City 235, Taiwan

wangenee@gmail.com

Extended Abstract

Colorectal cancer is now one of the major diseases in the world. With westernized diet in Taiwan, the incidence of colorectal cancer increases. For cancer stem cell therapy, CD133 (prominin-1) is a theoretical cancer stem cell (CSC) marker for colorectal cancer and is a proposed therapeutic target. Cells with CD133 overexpression have demonstrated enhanced tumor-initiating ability and tumor relapse probability [1-6]. To resolve the problem of chemotherapy failure, we will develop a magnetite-based nanomedicine using loco-regional hyperthermia combined with chemotherapy. The targeting carrier has a magnetite nanoparticle (superparamagnetic iron oxide nanoparticles, SPIO) core and a layer-by-layer polyelectrolyte molecule shell that carries irinotecan (CPT-11) and anti-human prominin-1 (PROM1/CD133) monoclonal antibody for cancer stem cell-specific targeting. Besides as a contrast agent for MRI, this nanomedicine plays as an important role to relay the externally delivered radiofrequency energy for tumor hyperthermia [7,8]. Locoregional heat can trigger a drug release from the carrier as it directly damages tumor cells and cancer stem cells. .Finally, the use of this nanomedicine can improve the half-life of chemotherapy drugs in the blood and reduce the side effect, and is significantly more efficacious than hyperthermia or chemotherapy alone for colorectal cancer therapy.

References

- [1] Y. Wu and P. Y. Wu, "CD133 as a marker for cancer stem cells: progresses and concerns," *Stem Cells Dev.*, vol. 18, pp. 1127–1134, 2009.
- [2] C. Zhang, C. Zhou, X. J. Wu, et al., "Human CD133-positive hematopoietic progenitor cells initiate growth and metastasis of colorectal cancer cells," *Carcinogenesis.*, vol. 35, pp. 2771–2777, 2014.
- [3] T. Baba, P. A. Convery, N. Matsumura, et al., "Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells," *Oncogene.*, vol. 28, pp. 209–218, 2009.
- [4] J. M. Yi, H. C. Tsai, S. C. Glöckner, et al., "Abnormal DNA methylation of CD133 in colorectal and glioblastoma tumors," *Cancer Res.*, vol. 68, pp. 8094–8103, 2008.
- [5] K. Hibi, M. Sakata, Y. H. Kitamura, et al., "Demethylation of the CD133 gene is frequently detected in early gastric carcinoma," *Anticancer Res.*, vol. 30, pp. 1201–1203, 2010.
- [6] D. Corbeil, A. M. Marzesco, M. Wilsch-Brauninger, et al., "The intriguing links between prominin-1 (CD133), cholesterol-based membrane microdomains, remodeling of apical plasma membrane protrusions, extracellular membrane particles, and (neuro)epithelial cell differentiation," *FEBS Lett.*, vol. 584, pp. 1659–1664, 2010.
- [7] G. Tan, C. Chia, M. Kumar, S. P. Choo, et al. "201 consecutive cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) procedures in a single Asian tertiary centre," *Int. J. Hyperthermia*, vol. 14, pp. 1-7, 2016.
- [8] N. R. Datta, S. Krishnan, D. E. Speiser, et al., "Magnetic nanoparticle-induced hyperthermia with appropriate payloads: Paul Ehrlich's "magic (nano)bullet" for cancer theranostics?" *Cancer Treat Rev.*, vol. 50, pp. 217-227, 2016.