Advances in Nucleic Acid Medicine Delivery to the Brain

SM Moghimi

School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK seyed.moghimi@ncl.ac.uk; moein.moghimi@gmail.com

Abstract - The phage display technology is widely used for identification and isolation of peptides that bind to a particular target with high affinity and specificity. Although a number of phage-derived peptides have been identified that bind to cerebral capillaries, conjugation of particulate drug delivery systems with such peptides have yielded disappointing results in brain targeting on intravenous injection [1]. To address these shortfalls, we introduced a phage mimetic termed NanoLigand Carriers (NLCs) to efficiently target and cross brain capillaries on intravenous injection [2]. NLCs are self-assemblies of a brain-specific phage display peptide conjugate that engage their targets through a hierarchical presentation of display peptides (e.g., as in protofilaments). On intravenous injection, NLCs reach the brain in substantial quantities without disrupting the integrity and functionality of the BBB. NLCs accommodate a wide range of guest molecules and targets two cellular receptors. On reaching the brain-parenchyma, NLCs carrying therapeutic nucleic acids engage with microglial cells and neurons, exerting unprecedented pharmacological effects without inducing inflammation and metabolic perturbations [2]. NLCs therefore overcome previous limitations in active targeting with particulate drug carriers, including those decorated with phage display peptides.

References

SM Moghimi & ZS Farhangrazi (2020) Therapeutic Delivery 11:465.
L-P. Wu et al. (2019) Nature Communications 10:4635.