Fabrication of Fe-Cu Bimetallic Nanoparticles on Graphene for the Removal of Trichloronitromethane in Water

Qiming Xian, Haifeng Chen, Mei Li, Tingting Gong
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University
Nanjing 210023, China
xianqm@nju.edu.cn; ahchf@126.com; Meili@nju.edu.cn; ttgong@nju.edu.cn

Extended Abstract

Halonitromethanes (HNMs), as an emerging class of disinfection by-products containing nitrogen (N-DBPs) in drinking water, have possessed a hazard to public health [1]. Halonitromethanes (HNMs) had frequently been detected in drinking water, sewage and swimming pool water [2-3]. Previous studies suggested that bimetallic particles with iron as the principal metal have been effective in degrading various organic and inorganic compounds [4]. The aim of this study is to prepare graphene supported Fe-Cu bimetallic nanocomposites (G-Fe-Cu) and evaluate the effects of G-Fe-Cu nanocomposites on degradation of trichloronitromethane (TCNM) in water.

Based on the data of XRD, TEM, XPS, Raman and BET, zero-valent Fe/Cu has been successfully combined into bimetal nanocomposites supported on graphene via facile carbonization and calcinations of glucose and ferric chloride mixtures. When the mass ratios of C/Fe/Cu was 50:10:1, the TEM images of G-Fe-Cu showed that the Fe⁰/Cu⁰ nanoparticles were well dispersed on the surface of graphite without aggregation and the particles size ranged from 5-30 nm. The images of XRD, and XPS revealed the individual nanoparticles were composed by the Fe⁰/Cu⁰ crystalline state and the Fe⁰/Cu⁰ nanoparticles of the G-Fe-Cu composite were assumed to be intercalated in graphene layers. Batch experimental results indicated that the as-prepared G-Fe-Cu could effectively remove TCNM in water. More than 99.7% of initial TCNM could be adsorbed and degraded under 10 mg/L G-Fe-Cu dosage (Fe⁰) within 60 min. The kinetic studies revealed that the removal of TCNM in water by G-Fe-Cu followed a pseudo first order rate (R² > 0.96). The dissolved oxygen and residual chloride of the solution could affect the removal efficiency of TCNM. The degradation efficiency of TCNM decreased with increasing pH from 5.5-8.5. The image of XRD of the used nanocomposites showed that Fe₂O₃ and Fe₃O₄ were the corrosion products of Fe⁰ nanocomposites after reaction, covered on the surface eventually leading the decrease of the reduction ability. In the process of reaction, the nano zero-valent iron corroded to Fe (II) and released into the solution. Fe (II) were absorbed and transformed to a mixture of iron oxides in the graphene material shape, however, the used G-Fe-Cu nanocomposites might be regenerated by calcinations in an Ar atmosphere.

In conclusion, the synthesized G-Fe-Cu nanocomposites could be a powerful material to remove HNMs from drinking water.

Keywords: Trichloronitromethane; removal; zero-valent iron; bimetallic nanocomposites; graphene

References