Evaluation of three fungal strains for biological removal of Carbamazepine and Atrazine

Gültén Yüksek1,2, Lounes Haroune2, Didem Okutman Taş1, Hubert Cabana2
1Istanbul Technical University, Environmental Engineering Department
34469 Maslak, Istanbul, Turkey
gulyuksek@itu.edu.tr; okutmand@itu.edu.tr
2Groupe de recherche sur l’eau de l’Université de Sherbrooke, Department of Civil Engineering, Université de Sherbrooke
2500 Boulevard de l’Université, Sherbrooke, Québec J1K 2R1, Canada
Gulten.Yuksek@Usherbrooke.ca, Lounes.Haroune@Usherbrooke.ca,Hubert.Cabana@Usherbrooke.ca

Extended Abstract
The fate of organic contaminants (OCs) in natural water is not well covered by the world-wide regulation community. The inefficiency of conventional wastewater treatment plants (WWTPs) to remove recalcitrant compounds results in a continuous release of biologically active molecules into the environment. Consequently, new techniques such as biological processes and bioremediation approach by using white rot fungi (WRF) is becoming more popular.

In this study, two recalcitrant model OCs, carbamazepine (CBZ) and atrazine (ATZ) and three different WRF strains (Trametes hirsuta, Coriolopsis polyzona, and Pleurotus dryinus) were selected for the removal of these OCs at three different environmental concentrations. Experimental set up were performed with single and mixed solution of CBZ and ATZ at 100, 150 and 200 µg l⁻¹. The sorption mechanisms were evaluated using biocided fungi. The removal of OCs and extracellular enzyme activity (laccase) were quantified by mass spectrometry and UV spectroscopy respectively.

The result showed that the removal efficiency of ATZ and CBZ were up to 85% even in the presence of biocides, that suggests the high contribution of the membrane biosorption of the WRF on ATZ and CBZ removal from aqueous solutions. The extracellular enzyme activities (i.e. LAC) were not detected in two of the tested fungal stains (i.e. C. polyzona and P. dryinus) but with T. hirsuta laccase activity raised up to maximal 600 U/l after 4 days of cultivation with CBZ (100 µg l⁻¹) and 800 U/l for ATZ (150 µg l⁻¹) after 3 days in the single sets experiments. In binary mixed set (150 µg l⁻¹), T. hirsuta laccase activity reached a maximal level of 900 U/l after 5 days. ATZ was removed at up to 100% during the first 24h for three WRF studied stains. Interestingly, the ATZ concentration in solution increased after 24h with T. hirsuta suggesting a passive uptake and extracellular release, while the living and biocided fungi had the same behaviour. Also, the removal efficiency of CBZ at three environmental concentrations was up to 100% on the first 24h without any fluctuation in the removal rate over a 5 day incubation period.

Acknowledgements
This study was funded by the Scientific and Technological Research Council of Turkey (TUBITAK) as well as the Natural Science and Engineering Research Council of Canada (NSERC) grant programs. Also the authors would want to thank Olivier Savary and Sabrina Saibi for their technical support.