Enhanced Ethylene Selectivity Toward Hydrodechlorination of 1,2-Dichloroethane over Ag-Pd Bimetallic Catalysts

Jingya Sun¹, Yuxiang Han¹, Haiqin Wan¹, Shourong Zheng¹, Lin Dong²

¹State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control
School of the Environment, Nanjing University
163# Xianlin Road, Nanjing, China
sunsun1118@126.com; hanyx2005@163.com; wanhq@nju.edu.cn; srzheng@nju.edu.cn
²Jiangsu Key Laboratory of Vehicle Emissions Control, School of Chemistry and Chemical Engineering, Nanjing University
donlin@nju.edu.cn

Extended Abstract

Recently, catalytic hydrodechlorination (HDC) of chlorinated volatile organic compounds (CVOCs) receives increasing attention because it is an environmentally friendly technique to convert CVOCs air pollutants into useful chemicals, olefins [1]. Then, improving the olefins selectivity of the catalysts for HDC of CVOCs has attracted considerable attention. We have studied the Pd-Ag bimetallic catalysts toward HDC of 1,2-dichloroethane to ethylene reaction.

We used surface reduction method to prepare Pd-Ag/Al₂O₃ catalyst, and evaluated their catalytic property toward HDC of 1,2-dichloroethane. As a result, Ag was deposited on the surface of Pd particles. With the increase of Ag content on the Pd surface led to the decrease of the amount of surface exposed Pd atoms. Thus, the Pd-Ag/Al₂O₃ catalyst showed a higher ethylene selectivity (95%) than that prepared by conventional impregnated method (60%), shown in figure 1 [2].

![Figure 1: The HDC of 1,2-dichloroethane over (a) im-Pd(0.97)-Ag(0.97)/Al₂O₃ and (b) sr-Pd(0.94)-Ag(0.96)/Al₂O₃ as a function of time on stream. (◆) Ethylene; (■) Ethane; (▲) Chloroethylene; (●) Chloroethane; and (△) Conversion.]

Though the selectivity of ethylene was improved over the Pd-Ag/Al₂O₃ prepared by surface reduction method, most of the Pd was not utilized. To overcome this disadvantage, we used co-impregnated method to prepare Pd-Ag/ZrO₂ catalyst with ultra low Pd loading. The results demonstrated that Ag(1.99)-Pd(0.099)/ZrO₂ showed a higher ethylene selectivity because isolated Pd atom was majority species at this Pd loading [3].

To enhance the utilization of Pd, very recently, we have prepared a series of Pd-Ag/Al₂O₃ catalysts with galvanic replacement method. This method is a thermodynamic spontaneous redox process driven by the difference between the
standard electrode potentials of two metals, and extra reducing agents was unnecessary. The results indicated that the state of Pd was isolated sites, dimmer sites or clusters. When the replacement amount of Pd was below 0.13 wt.% , Pd existed as isolated sites on the Ag surface, which showed a high ethylene selectivity (95 %).

It can be found that Pd-Ag bimetallic catalyst showed a high ethylene selectivity toward HDC of 1,2-dichloroethane when Pd formed isolated atom, and the state of Pd could be adjusted by the catalyst preparation method.

Acknowledgments
The financial supports from the National Key Research and Development Program of China (2016YFC0204301) and the Natural Science Foundation of Jiangsu Province (BK20151381) are gratefully acknowledged.

References