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Abstract - Agriculture is the backbone of the global economy. With the increasing pressure and demand on agricultural systems to 

make the industry smarter, there is a need to focus on the void to be filled. A first step to achieving the sustainable development goals in 

farming, can be to leverage remote sensing to maximize the efficiency on the farm. In this paper, a comprehensive review is dedicated to 

the state of the art of image processing techniques used in agricultural applications and later encouraging the use of Artificial Neural 

Networks for more precise feature extraction. The works that we analyze can be categorized in the following application domains of 

precision farming: a. Crop/Vegetation management b. Land management c. Soil management. With fields growing larger, better 

monitoring systems are needed for automated management to reduce expenses. Hence, by applying Artificial Intelligence (AI)-powered 

solutions, farmers will be able to do more work with less effort and improved quality. This paper reviews the concepts, tools and the 

potential solutions to the agriculture industry and the need for better image processing techniques in remote sensing. 
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1. Introduction 
While AI sees a lot of direct applications across sectors, it can also bring a paradigm shift in how we see farming today. 

From detecting plant diseases to predicting the crops that can deliver the best returns, artificial intelligence can help with one 

of the biggest challenges in agricultural domain: feeding an additional 2 billion people by 2050. [1] Applications of image 

processing in agriculture can be broadly classified into two categories: firstly, depending on the image understanding 

techniques and the second is based on the application of the same in the agricultural domain. This review mainly focuses on 

the trends of image processing methodologies in various domains of agriculture through these years and how they can be 

modified for the better. We perceive an image’s content based on objects. Once having perceived objects, we link them 

together by means of a complicated network made up by experience and knowledge. This very step was hardly implemented 

in image interpretation software or any other modelling used in the state-of-the-art techniques. The image analysis presented 

here implies dealing with and handling image semantics. In most cases, information important for the understanding of an 

image is not represented in single pixels but in meaningful image objects and their mutual relations. Procedures for image 

object extraction which are able to dissect images into sets of useful image objects are therefore a prerequisite for the 

successful automation of image interpretation. In this paper, we aim to juxtapose three major areas: AI, agriculture, and 

image processing to analyze the trends in their applications on the agro-industry over these years. To achieve this, first, a 

study of image processing techniques used in major spatial and spectral feature extraction is conducted. Lastly, we encourage 

the use of Artificial Neural Network (ANN) models in other applications. The structure of the presented work is as follows: 

Section 2 depicts the current trends in image processing-based methodologies used. Section 3 gives an overview of the 

literature on the applications of AI based image processing techniques (mentioned in the previous section) to find agricultural 

objects of interest for better precision farming. Finally, in Section 4, the concluding inferences and future expectations in the 

domain.   
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2. Advances in Image Processing  
 As stated above, the strong motivation to develop techniques for the extraction of image objects comes from the fact 

that most image data exhibit a characteristic texture which is neglected in common classification methods. The texture of an 

image can be defined in terms of its smoothness or coarseness. One field of image processing in which the quantification of 

texture plays a crucial role is that of industrial vision. One of the native ways to carry out the observations is by image 

segmentation into homogenous areas. [2] With a comprehensive literature review on the trends of image processing 

techniques used on the aforementioned application areas in agriculture, there is a need to observe the advancements to be 

used while processing the images. With the advent of better sensors, we have image data with better resolution. The problem 

of mixed pixels still remains as we have sensors with certain spatial resolution for each one of them. In order to overcome 

the limitation, we have to use precise classification methods, to extract pixel by pixel feature information. One such method 

used earlier was linear mixture model (LMM), which assumes the spectral reflectance of each pixel in an image to be a linear 

combination of the spectra of these end members weighted by their respective areal proportions within the pixel [3]. The 

limitations of using such a method is to expect an accurate end member spectrum and the surface component should be 

assumed to be opaque. In order to better the accuracy for classification of images, we can also use fuzzy sets. The fuzzy 

classifiers depict the degree of membership of pixels in an image to the user defined categories.  Popular fuzzy set-based 

approaches are the fuzzy c-means clustering [4], the probabilistic c-means clustering [5] as well as the fuzzy supervised 

classification introduced by Wang [6]. The main drawback of using the fuzzy based classification is, if in the absence of 

training data, we try to detect the fuzziness, as this will give a membership bias to the trained classes. Finally, the third 

advanced method to improve the image classification process is the use of neural network-based classifiers to train a model 

to match the known class spectra pattern to produce an output layer with reduced errors. For the classification problems of 

specific objects in the image using neural networks have proven to be more accurate than conventional methods [7], [8], 

[9].   

  

Segmentation for Image Classification  
 Human vision generally tends to divide images into homogeneous areas first, and characterizes those areas more 

carefully later [11]. Following the above hypothesis, dividing the image into meaningful objects of the land surface will 

result in more intuitive feature extraction. Segments in an image will never be able to represent meaningful objects of interests 

in all the scales and will be questionable for multi resolution images. Segmentation also requires a considerable amount of 

human effort to carefully divide the image onto the objects of interests which are intuitive and subjective to the user. The 

segmentation techniques can be divided into edge- and region-based sub methods, described below. There are chances of 

uncertainties to arise from such elements as measurement error, inherent variability, instability, conceptual ambiguity and 

over-abstraction [10] depict four aspects which can cause uncertainty in the image classification by segmentation, namely 

fuzziness, multiple criteria, spatially incomplete definitions and time incoherence. Gahegan 1999 [12] discussed the 

uncertainties in the procedure of image classification.   

a. Edge based segmentation  

 This type of segmentation technique is based on the representativeness of each pixel with respect to its neighboring 

pixels. To carry out image segmentation, the vectored minima of the representativeness delimit areas consisting of pixels 

with similar spectral features (spatial segments). Later, standardization is performed by calculating the convergence index 

for every pixel in a specific window. [13]  

 Region based segmentation  

 In this type of segmentation, we cluster pixels starting with seed points and divide into regions until a certain threshold 

is reached. This threshold is generally the combination of size and homogeneity. This process continues until the entire image 

gets segmented. This type of method depends on a set of given seed points. The first step is to extract the characteristics and 

spatial features from a textured input image and in the optimization stage, grouping them into homogeneous segments by 

minimizing quality measure. This can be achieved by clustering based cost functions given in. [14], [15] and [16].  
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Artificial Neural Networks (ANN) for Image Classification  
Artificial Neural Networks (ANNs) are inspired by the human brain functionality, emulating complex functions such as 

pattern generation, cognition, learning, and decision making [17]. The human brain consists of billions of neurons that inter-

communicate and process any information provided. Similarly, an ANN is a simplified model of the structure of the 

biological neural network, consisting of interconnected processing units organized in a specific topology. Deep ANNs are 

most widely referred to as deep learning (DL) or deep neural networks (DNNs) [18].  One of the main advantages of DL is 

that in some cases, the step of feature extraction is performed by the model itself. DL models have dramatically improved 

the state-of-the-art in many different sectors and industries, including agriculture. Deep Neural Networks (DNN) are simply 

an ANN with multiple hidden layers between the input and output layers.   

 

3. Review  

This section focuses on the state-of-the-art study based on algorithms to extract high level or low-level features 

associated with land, vegetation and soil information from the remotely sensed images to further perform classification. In 

image processing the sources of radiation include Gamma ray imaging, X-ray imaging, imaging in UV band, imaging in 

visible band and IR band, imaging in Microwave band and imaging in Radio band. [19]. There are a number of challenges 

associated with the use of remote sensing to find objects of interest using image processing. Sensor systems have a specific 

instantaneous field of view (IFOV) or ground-projected instantaneous field of view (GIFOV) – which is simply: a certain 

spatial resolution. Hence, with the improvement in spatial resolution, the area of the smallest pixel decreases, and the 

homogeneity of soil or crop or land characteristics within that pixel increases. [20]. In this paper, we explore three different 

sections- Land, soil and vegetation, where the image processing techniques have taken place. The goal of this literature 

review is to explore the detection of usable objects from remotely sensed imagery using ML algorithms along with combining 

image processing and GIS functionalities in order to utilize spectral and contextual information in an integrative way. Each 

of the categories explores a real-world problem associated with the domain which can make use of a better image 

classification or feature extraction-based approach to find out objects of interest.   

 
3.1. Land Management  

T. Blaschke et al [21] in their study explained more about advancements in sensors to enhance features in an image for 

land classification. In high-resolution images, for example, each pixel is not closely related to vegetation physiognomy as a 

whole, and vegetation always shows heterogeneity as a result of irregular shadow or shade, gaps, vegetation patchiness or 

landscape complexity. While dealing with landscape patterns, the most common problem that arises is of mixed pixels. There 

were a huge number of proposed possible solutions in addressing the above problem by segmentation. Although the 

techniques are well developed and sophisticated variations include soft classifiers, sub pixel classifiers and spectral unmixing 

techniques, it is argued that they do not make use of spatial concepts. Another limitation we face while dealing with problems 

based on land use and classifications is the problem of mixed pixels classification as discussed in the previous section of 

image processing. The concept of segmentation was first introduced by Haralick et al. [22] where the research presented an 

image analysis dealing with image semantics. In this paper, it was argued that the whole conceptual framework based on a 

pixel as the smallest unit of consideration is limited as long as spatial neighborhood and proximity are not considered. 

Another research based on monitoring change detection in land cover and land use by [23] talks about change detection, 

monitoring and updating based on the land cover-land use domain. These changes rely primarily upon two types of 

techniques: map to-map comparisons and image-to-image comparisons. Recent developments in image classification 

techniques like artificial neural networks (ANNs), fuzzy set methods, genetic algorithms, and support vector machines are 

some improved representations of the complex environments where we may not have linearly separable data points, but it 

solves the problem of uncertainty in segmentation and helps to extract finer details of the textured images like smoothness 

which can help in differentiating the land cover better.  Table 1 depicts a summary of the neural network-based modelling 

approaches followed in recent years to extract important features from the image.   
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Table 1. A review of the algorithms used for Land Management applications 

 

Application 

Area/Goal  

Current state of art  Model  Advantages  Accuracy  Source  

Land cover 

classification  

Recent work has focused on 

including context into the 

classification process by 

using context features 

(Hermosilla et al., 2012) 

and Markov or Conditional 
Random  

Fields (CRF)  

(Montanges et al., 2015; 

Novack and  

Stilla, 2015; Albert et al., 

2017)   

Convolution  

Neural  

Networks 

(CN 

N)  

Traditional pixel-based machine 

learning methods and the object-

based methods have an average 

classification accuracy of 80%, 

whereas most of the reviewed 

deep learning methods achieve 

around 85% classification 

accuracy. Precisely, 85.7% and 

77.4% can be achieved for land 

cover and land use, respectively   

     

    

    

    

  

85.6%  [38]  

High  

Precision  

Agriculture  

1. Pixel based 

classification (PBC) 

and object-oriented 

classification (OOC) 

using hyper-spectral 
imaging.   

2. Remote sensors, 

satellites, and UAVs 

can gather information 

24 hours per day over 

an entire field.   

SVM 

(Support 

Vector 

Machine) 

Supervised learning rate 

increased the overall accuracy to 

92.   

92%  [39]  

Plant  

Phenotyping  

Existing classification 

methods include supervised 

pixel oriented and object-

oriented classification 

based on image 

segmentation in precision 

agriculture using 

hyperspectral images.  

SVM, CNN  The results achieved were fast 

and accurate for every crop type.  

SVM 

accuracy:  

94%,  

CNN 

accuracy:  

73%  

[40]  
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3.2 Soil Management  

The accurate estimation of soil properties from the remotely sensed imagery can help analysts to achieve good quality 

soil management. There are a number of challenges associated with soil research. Diversity in grasslands as spatially 

displayed change in soil and crop characteristics as well as the temporarily displayed variability of such irregularly distributed 

characteristics. The main aim of precision agriculture is to focus on reducing the uncertainty in decisions required to control 

variation on farms. Future research should be able to focus on linking different sensor approaches using networks within and 

between processes rather than focusing on the development of individual sensor systems. The first study in this category was 

‘farming by soil’ claimed by Larson & Robert [24] in their research and the second one was “Soil Sampling Management 

Zone” in [25], [26] and [27] in their respective researches. A third approach to precision agriculture began to emerge in the 

early 1990’s known as proximal soil sensing. This approach involved spatial variability in soil properties using sensors 

mounted on tractors. Due to variations in spatial and temporal features, we can’t expect the same soil to be present in all the 

areas. Hence, advancements in sensor technology is required to improve the spectral features of the image, helping the 

analysts to study in detail. The second study by [28] was developed for the prediction of soil condition. The study presented 

the comparison of four regression models for the prediction of soil organic carbon (OC), moisture content (MC), and total 

nitrogen (TN). The authors used a visible-near infrared (VIS-NIR) 2spectrophotometer to collect soil spectra from 140 

unprocessed and wet samples of the top layer of Luvisol soil types. The last study [29] presented a novel method for the 

estimation of soil moisture, based on ANN models using data from force sensors on a no-till chisel opener.  The table shown 

below depicts an overview of the machine learning classifiers or ANNs used to extract objects of interests from the soil 

images collected.  

 
Table 2. AI based image processing methods applied on Soil management application 

 

Soil 

property 

Features Observed Model Goal Accuracy Source 

Soil 

condition 

soil samples from top soil 

layer of an arable field 

SVM Prediction of soil OC, MC RMSE = 

0.062% 

[41] 

Soil 

temperature 

Daily 

Weather data, 

air 

temperature 

ANN Detection and mapping of 

the weed: Silybum 

marianum 

98.87% 

accuracy 

[42] 

Soil moisture Force acting on the chisel 

and speed. 

ANN/MLP (Multi-

Layer Perceptron) 

Prediction of soil moisture RMSE = 

1.30% 

[43] 

            

3.3 Crop Management  

Aggelopoulou, A. D., et. al [30] study the variability in flower density using image processing and correlates it with the 

fruit yield. An apple orchard in Greece was chosen as a case study for the analysis as it is the fourth most important tree crop 

after olive, citrus and peach. The objective of the research is to use an image processing algorithm by MATLAB to predict 

tree yield by analyzing the picture of the tree at full bloom. The methodology presented is not scalable as it is just limited to 

a sample space of a group of 10 trees at a time. Additionally, in order to create the yield map, the geographical position of 

the middle tree was recorded using a handheld computer with GPS and sampling using a hand-held commercial RGB digital 

camera. This results in an increase in manual load. The future goal should be to improve the data quality by minimizing the 
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error while capturing images. The research analysis concluded with an 18% error in predicted yield. Saxena, L. et. al [31] 

research reiterates the idea of precision agriculture to be a region-specific farming technique by including data from image 

databases, which in turn can be used to assist by providing high resolution pictures to be used for decision-making. The 

process of image analysis begins with grayscale conversion of the images, which is a major application to food quality. In 

addition to the conversion, image histogram analysis can provide us with information on where the majority of defects lie 

through dark or black spots with low proportion and no significant peak in the gray level histogram. The main barrier in the 

development of image processing in the field of agriculture is the limited data sets available for the analysis. There is a need 

for agricultural databases that will help develop more image processing techniques. De Baerdemaeker, J. et. al [32] research 

focuses on the increase in agriculture products on a global scale, there comes a growing concern about their food quality and 

safety. This research is concerned with good agricultural practices using the technologies of precision agriculture, including 

automation and robots with an aim of minimal environmental impact. In Schellberg, J., et. al’s [33] paper the authors talk 

about how Precision Agriculture over the years has affected grasslands -plant communities that are based on grasses and 

herbs, in which shrubs are rare and trees are absent. The authors conclude from intensive literature screening that robust 

decision support systems need to be developed in order to improve the applicability of PA in grasslands. In another study 

[34], the authors developed a model for the estimation of grassland biomass (kg dry matter/ha/day) based on ANNs and 

multi-temporal remote sensing data. Another study dedicated to yield prediction, and specifically to wheat yield prediction, 

was presented [35]. Their method used satellite imagery and received crop growth characteristics fused with soil data for a 

more accurate prediction. The authors of [36] presented a method for the detection of tomatoes based on EM and remotely 

sensed red green blue (RGB) images, which were captured by an unmanned aerial vehicle (UAV). Also, in the work of [37], 

the authors developed a method for predicting the stage of rice development based on SVM and basic geographic information 

obtained from weather stations in China.  

                     
Table 3. A review of the algorithms used for Crop yield detection 

 

Crop Features Observed Model Goal Accuracy Source 

Wheat The normalized values of the soil 

parameters and NDVI 

ANN Wheat yield 

prediction 

81.6% 

accuracy 

[44] 

Grass Vegetation indices, spectral bands 

and NIR 

ANN/Artifici al 

Neural Networks 

(ANFIS) 

Grassland biomass 

estimation in 

Moorepark and 

Grange, 

Ireland 

Grange: 

RMSE = 

15.35, 

Moorepark: 

RMSE = 

11.07 

[46] 

Rice Soil physicochemical data with yield. Support Vector 

Machines (SVM) 

Rice yield prediction Average 

RMSE = 

88.3% 

[47] 

Cotton Short wave infrared hyperspectral 

transmittance images depicting cotton 

along with botanical and non-botanical 

types of foreign matter. 

SVM Detection and 

classification of 

common 

types of botanical and 

non-botanical foreign 

matter 

95% accuracy [48] 
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Table 4.  A review of the algorithms used for Crop Weed Detection 

  

Features Extracted Model Goal Accuracy Source 

Camera images of grass and 

various weeds types 

SVN The Classification methods for grass 

vs. weed detection 

95.1% for mixed weed and 

mixed weather conditions 

[50] 

Spectral bands of red, green, 

and NIR 

ANN Detection and mapping of the weed: 

Silybum marianum 

98.87% accuracy [51] 

  

4. Discussions and Conclusion 
There are around 50 articles reviewed in this paper. The largest number of articles (i.e., 24 articles) are related to 

applications of ML in crop yield management. As shown in Figure 1, the trend in the distribution of applications is skewed 

toward crop and land management.  The figure depicts a density visualization of the papers reviewed in the domain of Image 

processing using artificial intelligence-based techniques to extract the objects of interests in the Agricultural-industry. The 

analysis is done using the bibliometric analysis of publications to give a better idea about the distribution of papers covering 

the aforementioned area. The dense yellow color on the words “images”, “features”, depict the high use of spectral and 

spatial feature extraction. In ML classifier-based models, it was observed that features can be extracted without the need for 

fusion of data from other resources. Overall, we can conclude that remotely sensed image processing with artificial 

intelligence algorithms will improve the economic performance, general performance, coordination performance and robust 

performance of agricultural automation systems. Through the application of cutting-edge technologies such as Deep learning, 

Machine learning and spectral analysis, agricultural automation equipment and systems will be developed in a more 

intelligent way. [52]  
 

 
Fig. 1. Density visualization of the papers in the field of Image processing using Artificial Intelligence. 
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