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Abstract 
Seawater desalination by sub-atmospheric vapor pipeline transfer (known as SAVP) is one of the innovative seawater 

desalination methods that could be used in lands and industries. SAVP systems works based on the temperature difference 
between a hot source and a cold environment; this method can provide users with a variety of advantages in industrial and 
field applications. The temperature of the hot and cold sources, as boundary conditions, can be considered as a function of 
time in natural and industrial environments; therefore, it affects the process of convection and diffusion significantly. In such 
a case, new and interesting challenges arise; such as reviewing and simplifying the basic convection-diffusion equation 
through obtaining the temperature profile in the pipeline by using advanced engineering mathematics. Two mathematical 
approaches can be developed to solve the temperature differential equation; one is through Eigen functions and the other one 
uses Green’s equation based on the length of the pipeline for SAVP. In this study, vapor’s temperature will be formulated as 
a function of time and length in accordance with the given assumptions and information. Mathematical simulations were 
performed for a field-scale spanning between Bandar Abbas and Geno (two places on the south coast of Iran) biosphere 
reserve. Also, an industrial scale in a vapor transfer device with a heat source capacity of about 200 liters was assembled. 
The results showed an acceptable range of accuracy in the proposed methods.  
 
keywords: Sub-Atmospheric Vapor Pipeline (SAVP); Seawater Desalination; Mathematical Analysis; Eigen Functions; 
Green Function, Temperature Difference. 
 

Nomenclature 
Unit Parameters Symbols 
- time function for an ODE solution a(t) 
- boundary condition BC 
J/(kg.°C) Thermal heat capacity of vapor C 
- non-homogeneity function F(x,t) 
- time function f(t) 
- green function solution G�x, t׀ ξ, τ� 
- time function g(t) 
DL a representative for convective heat transfer coefficient H 
- transformed initial condition J(x) 
- non-homogeneity solution J(x,t) 
- transformed initial condition K(x) 
m or DL  pipeline length L 
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- numbers 0,1,2,… M 
- numbers 0,1,2,… N 
- partial differential equation PDE 
± J external thermal source or sink  Q 
- spherical or cylindrical distance variable R 
- steady state solution S 
°C, K or DL vapor temperature T 
- time function T(t) 
sec, hr time T 
subscripts transition state Tr 
- dependent function i.e. DL temperature U 
m/s vapor velocity V 
- homogeneous dependent function W 
- transition solution Wtr 
m length variable or vapor transfer pipeline x, y, z 
- solution for an ODE y(x) 

Greek letters 
m2/s thermal diffusion coefficient  Β 
DL spherical or cylindrical angle variable Θ 
- Initial condition; a function of x Φ(x) 
DL spherical angle variable Φ 
DL dummy variable for x Ξ 
DL dummy variable for t 𝜏𝜏 
kg/m3 vapor density ρ 
DL partial differential symbol ∂ 

*: DL = dimensionless 
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1. Introduction 
Sub-Atmospheric Vapor Pipeline (SAVP) and vapor condensation at destination have been of interest for seawater 

desalination and provision of drinking water supply after 2000 (mainly because of their newly confirmed advantages); and 
have been the subject of several experimental and theoretical studies till now. The use of natural potentials makes desalination 
and seawater transfer in arid and water-scarce areas highly attractive and justifiable. However, the limited rate of freshwater 
transfer and the need for natural warm and cold sources for implementation are obvious limitations of the SAVP method; 
however, this method has several benefits and advantages in terms of industrial efficiency indices and economic criteria. 
Drastic reduction or even elimination of energy consumption, advantages such as seawater desalination with minimal energy 
input by eliminating the heat source and mechanical devices, the drastic reduction of energy consumption (or elimination) 
in the process of water transfer, the possibility of re-access to energy at destination through the use of a water turbine and 
finally utilizing the benefits of the Paris Convention for the advantage of not producing carbon dioxide make the SAVP 
desalination highly efficient and preferred over other methods [1, 2]. In another invention called "desalination towers", which 
is significantly different from other available methods, hot air, after being blown and mixed with seawater, turns it into a 
two-phase evaporating fluid and stimulates it to go up a tower called the desalination tower [3, 4]. 

Desalination with multi-stage flash distillation (MSF) is done inside a narrow cylindrical chamber [5]. In this method, 
hot and high-pressure air passes through the interlocking parts and ducts of a cylindrical chamber. This cylindrical chamber 
is a relatively large evaporator whose core is filled with seawater. Blowing hot air causes seawater to evaporate and 
subsequently be saturated. In another method called “desalination pipes” the researchers installed pipes in which the salt 
water of the sea heats up and evaporates after continuous passage and exposure to sunlight [6]. 

The closed ejector-heating-cooling cycle is another invention, which is still one of the most common desalination 
methods [7, 8]. Among the low-energy desalination approaches, an innovation is mentioned which consists of two ten-meter 
columns, one designed and installed as an evaporator and the other as a condenser [9]. A portion of freshwater passes through 
an ejector and then, according to Bernoulli's law, the velocity of the fluid increases at the convergent cross-section of the 
ejector, and consequently the pressure decreases. The seawater, with its temperature raised by a heater, becomes ready to 
evaporate and passes through the ejector with fresh water. The two-phase fluid of vapor and freshwater is then cooled and 
condensed in a heat exchanger.  

The main cause of SAVP transfer is the gradient of temperature between the source and destination. The temperature, 
pressure, and density of the compressible fluid (which is water vapor) decreases along the way, and the vapor that enters the 
cold zone slowly condenses, and freshwater is produced and accumulated. This technique can be used in a factory or a tall 
building (industrial scale); as well as in a field application with several kilometers of distance between a coastal city and the 
surrounding cool altitudes (field scale), as previously studied for some Middle Eastern cities [10]. To summarize the history 
and background of previous works, schematic illustrations of this desalination technique used for industrial and field 
applications are shown in Fig. 1 and Fig. 2, respectively. These figures help readers to understand the mechanism and 
elements of SAVP desalination.  
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Figure 1:  SAVP technique used for an industrial application 
 

 

Figure 2: SAVP technique used for a field application 

Some of the facts related to this transfer method, such as the mass balance of the transferred vapor [11] or the momentum 
balance equation have been described in previous studies [10]. In the first study, only the vapor mass balance was investigated 
through a few experimental relationships, and in the latter, the momentum equation was solved using Antoine’s equations, 
continuity and an appropriate equation of state, which led to the extraction of temperature and pressure profiles. However, 
more complete results are still expected for SAVP. In our other attempt, the fluid thermodynamics of vapor transmission 
through the pipeline were studied [12]. Generally, more attention needs to be paid to energy dissipations, thermodynamic 
losses [13] and how to minimize them in desalination [14], as well as its global commercialization [15]. Several other 
interrelated work based on the effect of temperature difference on sub-atmospheric vapor transmission have been done in 
this respect [16, 17].  

There are two shortcomings in the interrelated studies referenced above. First, both cases [10, 11] have dealt with 
empirical equations in some way and still require an independent and robust mathematical framework or theory; and second, 
these studies have been conducted by under the assumption that the temperature is constant at the source and destination. 
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This assumption is a result of an incomplete understanding of the nature of SAVP. Whether in a field study where the climate 
conditions change frequently or in an industrial scale, where the source and destination temperatures may fluctuate even 
more rapidly, it is no longer possible to use the equations derived from mass or momentum balances and still obtain accurate 
results. 

The mathematical solution to such a problem involves investigating the transfer of sub-atmospheric vapor through a 
partial differential equation whose boundary temperatures change over a pre-known or applicable pattern. Solving such 
problems poses special mathematical and engineering challenges that are not easily solved through simple solutions 
compared to partial differential equations. The present study aims to provide an acceptable mathematical methodology for 
finding the temperature profile of the vapor transfer path in SAVP desalination plants on both industrial and field scales by 
using previous experimental and laboratory data. 

 
2. Material and Methods 
2.1. Description of SAVP System 

Before the mathematical modeling of SAVP for water desalination, it is necessary to have a description of the materials 
and equipment required for this work. An evaporator usually works with the sun's heat energy in a hot source and produces 
vapor. By evacuation (once only) during the life of such a desalination plant, which is done artificially, vapor rises along the 
pipe and condenses in the cold source. Following this, the condensation provides an automatic vacuum for vapor transference. 
Details of field and industrial-scale transfers have already been mentioned in the references; and temperature, pressure, and 
velocity profiles are available in the industrial system, which is used in this paper to verify the mathematical model [10, 12]. 
In an industrial application, a condenser with a high level of condensation produces freshwater; while in a field application, 
the extension and expansion of the transfer pipe act as a tube condenser and, in a determinable range, cause the vapor to turn 
into liquid. 

 
2.2. Modeling of Momentum Transmission Phenomenon in SAVP 

The vapor moves as a compressible fluid in the sub-atmospheric vapor pipe transfer and gradually dilutes during pressure 
and temperature drop to condensate. Due to the compressibility of the vapor, the velocity of the fluid in this transfer increases. 
A complete description of momentum transmission modeling is given in reference [10]. In this modeling, the pipe length 
was divided into very small sections and the momentum equilibrium equation was solved along with some experimental 
equations such as the Antoine equation, continuity equation, and an equation of state for gases, with a trial and error 
technique. Figure 3 and Equation 1 present basics of momentum calculations. The purpose of this modeling was to determine 
the temperature, pressure, and velocity profiles in boundary conditions of constant and variable temperatures. 

 

 

Figure 3: An element of SAVP for mass and momentum calculations. 

∂ρ
∂t

+ ∂(ρV)
∂x

= 0          Eq. (1) 



 
 

 
 

 
121-6 

2.3. Convection-Diffusion Equation  
2.3.1. Convection-Diffusion Equation in SAVP 

Fluid kinetic energy, some of its physical properties (such as density), friction, shear stresses, and static pressure in the 
form of the three known geometries of Cartesian (x, y, z), Cylindrical (r, θ, z), and Spherical (r, θ, φ) are in balance with 
each other. The ratio of length to the diameter of the pipe (L/D) is infinite. Although the tube is cylindrical, due to the 
insignificance of the gradient of temperature profile along the radius r and the dominancy of the temperature change in the 
x-direction, the Cartesian system is suitable for study and modeling. 
 
2.3.2. Convection-Diffusion Equation and Math Operation in SAVP 

Vapor transfer in a pipe can be expressed by the general convection-diffusion equation. Temperature changes as a 
function of time and location are expressed in this equation, in which the temperature changes due to variation in fluid 
velocity, its penetration, and influence of external heat or cold sources. Equation 2 shows the convection-diffusion equation 
in the vapor transmission line. 

∂T
∂t

+ Vx
∂T
∂x

+ Vy
∂T
∂y

+ Vz
∂T
∂z

= β �∂
2T
∂x2

+ ∂2T
∂y2

+  ∂
2T
∂z2

�± Q
ρc

     Eq. (2)  
In this equation, T is the vapor temperature and t is the time, β is the coefficient of the heat fraction in the diffusion heat 

transfer state (in the fluid mass), ρ is the vapor density, and c is the vapor heat capacity. β is one of the physical properties 
of a fluid and is equal to the fraction k / (ρ.c) where k is the coefficient of thermal conductivity. β has a unit of area per time 
(for example m2 / sec) which indicates the amount of heat diffusion. For water vapor (as a gas), the heat diffusion number is 
a slight function of temperature and slowly varies between 25 and 300 ° C in the range of 1.22×10˗6 to 1.32×10˗6 m2 / s. Such 
small changes suggest to researchers that this physical property, especially for cold vapor transfer, is a fixed number that will 
vary just based on the fluid type [18]. 

V is the velocity of the fluid and can be applied in all three directions of length (Vx), width (Vy), and height (Vz). Q is 
an external thermal factor that can affect the solution of Equation 2 in terms of changes in time and space (or both). The 
algebraic sign of this thermal factor (Q) will be positive in the form of heating, and negative if it reduces the heat of the 
system. The most important symbol inserted in Equation 2 is "±", which indicates the reception or loss of heat. "System" 
here means the vapor transfer pipe. Equation 2 can be simply re-written as Equation 3, which corresponds to the SAVP and 
is suitable for application in mathematical solutions: 
∂T
∂t

+  Vx
∂T
∂x

= β �∂
2T
∂x2

� ± Q
ρc

        Eq. (3)  

If the transfer pipe is assumed to be completely insulated, the Q term will be omitted. In Equation 3, the heat transfer of 
vapor whose temperature is denoted by T, occurs both in the form of heat diffusion (β) and convection (with velocity Vx). 
As mentioned in the introduction, the methods of Eigen functions and solving through the Green Equation will be explained 
and utilized in the following sections. In both methods, a technique must be introduced to eliminate the Vx, solve the partial 
differential equation, and then insert the velocity in the final solution. The thermo-physical property of β, in Equation 3 is 
not dimensionless. 

 
2.4. Solving Method Using the Eigen Functions 

The method of solving using Eigen functions is generally a mathematical representation of the well-known method of 
separating variables used for non-homogeneous boundary conditions. Non-homogeneous boundary conditions usually refer 
to conditions where one boundary condition or both are a function of time. Due to the spatial limitation of SAVP and the 
specificity of its beginning and end, the boundary conditions will be consistent with the temperature conditions of the 
evaporating and condensing equipment. In unstable conditions, the temperature of these two pieces of equipment is a function 
of time. Such a situation is consistent with the real nature of SAVP due to the fluctuations of day and night as well as the 
temperature fluctuations expected during different seasons. Therefore, the system of differential equations of the parts 
corresponding to the mentioned fact can be expressed by the system of equations 4. Meanwhile, it should be noted that 
α2appears for β parameter in Equation 4. 

PDE   ∂U
∂t

+  Vx
∂U
∂x

= α2. ∂
2U
∂x2

  ; 0<x<L, t>0     Eq. (4-1) 
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BC1    U(0, t) = f1(t)   ; t> 0       Eq. (4-2) 
BC2    U(L, t) = f2(t)   ; t> 0       Eq. (4-3)  
IC       U(x, 0) = Ф (x)   ; t = 0, 0 ≤ x ≤ L    Eq. (4-4) 
U (the dependent function) here represents the temperature for performing and explaining mathematical operations. The 

above-mentioned differential equations can be considered as the most realistic and natural convection-diffusion equation to 
describe the temperature profile in a SAVP. For ease of performing mathematical operations, the index x is removed from Vx 
and the sides of the equation are divided by α2. Then we have: 

PDE  1
α2

∂U
∂t

 = ∂2U
∂x2

− V
α2

∂U
∂x

  ;0< x < L, t > 0     Eq. (5-1) 
BC1    U(0, t) = f1(t)   ;t> 0       Eq. (5-2)  
BC2   U(L, t) = f2(t)   ;t> 0       Eq. (5-3)  
IC      U(x, 0) = Ф(x)   ;t = 0, 0 ≤ x ≤ L     Eq. (5-4) 
The term V

α2
∂U
∂x

 makes some obstacles in the solution of Equation 5. By removing the coefficient V
α2

, a situation is created 
in which it will be possible to solve this differential equation. In other words, Equation 5 cannot be solved analytically as 
long as it includes both the term ∂U

∂x
and its coefficient V

α2
. The technique [19] of elimination of ∂U

∂x
will be possible through an 

innovative variable change as follows, which applies to the differential equation (PDE), the boundary conditions (BCs), and 
the initial conditions (IC). 

PDE   U(x, t)  = W(x, t). exp �
V�x− Vt2 �

2α2
�       Eq. (6-1) 

BC1   U(0, t) = W(0, t). exp �−V
2t

4α2
�        Eq. (6-2) 

BC2   U(L, t) = W(0, t). exp �
V�L− Vt2 �

2α2
�        Eq. (6-3) 

IC      U(x, 0) = W(x, 0). exp �V.x
2α2

�       Eq. (6-4) 
 

Then, a new differential equation system in terms of W (x, t) with the following properties is obtained: 
PDE ∂W

∂t
 = α2 ∂

2W
∂x2

     ;0< x < L, t > 0   Eq. (7-1) 

BC1  W(0, t) = f1(t)/exp �−V
2t

4α2
� = g1(t)  ;t> 0     Eq. (7-2) 

BC2  W(L, t) = f2(t)/exp �
V�L− Vt2 �

2α2
� =  g2(t)  ;t> 0     Eq. (7-3) 

IC     W(x, 0) = Ф(𝑥𝑥)

exp � V.x
2α2�

= K(x)    ;t = 0, 0 ≤ x ≤ L   Eq. (7-4)  

The Equation 7 can generally include convective effects at the end boundary. For the evaporator, due to the limited 
temperature changes of the seawater as well as the beginning of vapor movement from zero velocity, convection factors 
usually have little effect on the vapor temperature. For the condenser, on the other hand, the velocity of the vapor at the 
condensate point is maximized, and therefore both the convection and diffusion factors are effective and debatable. The 
Pecklet number (Pe) (which is the ratio of convective transfer phenomenon to diffusion transfer phenomenon) in two 
evaporating and condensing locations can be assumed to be small and very large numbers, respectively. 

PDE  1
α2

Wt = Wxx   ; 0<x<L, t>0     Eq. (8-1) 
BC1   W(0, t) = g1(t)   ; t>0       Eq. (8-2) 
BC2   Wx(L, t) +  hW(L, t) = g2(t) ; t>0       Eq. (8-3)  
IC       W(x, 0) = J(x)   ; t = 0, 0 ≤ x ≤ L    Eq. (8-4) 
When the boundary condition is a function of time, then the solution W(x, t) can be considered as the sum of a transient 

function Wtr (x, t) and a stable one S(x, t). The terms tr and S represent transient and stable solutions, respectively. This 
concept is shown in Equation 9. 
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W(x, t) =  Wtr(x, t) + S(x, t)         Eq. (9) 
As can be seen, the stable solution is denoted by the Function S(x, t); and the time function (t) is evident in it, which 

may be considered a contradiction. The explanation is that due to the limited temperature changes at the beginning and end 
of SAVP, in which the evaporator and condenser are located, respectively, the time function (t) imposes limited temperature 
conditions on the transmission line pipe during the long run. Hence, the limited range of the function S (x, t) can be considered 
equivalent to its persistence. Such an inference has already been used in references as a solution with a solid theoretical basis 
[19]. A stable solution is more a function of boundary conditions than a transient solution, therefore, according to Equation 
10 we have: 

S(x, t) =  A(t). �1 − x
L
� + B(t). (x

L
)        Eq. (10) 

The function S (x, t) is of type W. Therefore, it can be re-written in a manner similar to the system of equations 11: 
PDE   1

α2
St = Sxx   ; 0<x<L, t>0     Eq. (11-1) 

BC1    S(0, t) = g1(t)   ; t>0       Eq. (11-2)  
BC2    Sx(L, t) +  hS(L, t) = g2(t) ; t>0      Eq. (11-3) 
The initial condition S is the same as the initial condition W. The time functions B(t) and A(t) and even the stable 

function S (x, t) are extracted after the necessary placement as follows: 
A(t) = g1(t)           Eq. (12-1)  
B(t) = 1

1+Lh
[g1(t) + Lg2(t)]        Eq. (12-2) 

S(x, t) =  g1(t)(1− x
L
) + 1

1+Lh
[g1(t) + Lg2(t)](x

L
)      Eq. (12-3) 

And subsequently, the transient part of the solution, Wtr (x, t), will be equivalent to the following expression: 
Wtr(x, t) =  W(x, t) − S(x, t)        Eq. (13) 

Now we have a new differential equation for the transient part, as the set of equations 14. 
PDE  Wtr,t =  α2Wtr,xx − St(x, t)  ; 0<x<L, t>0    Eq. (14-1)  
BC1   Wtr(0, t) = g1(t)− g1(t) = 0  ; t>0     Eq. (14-2) 
BC2   Wx,tr(L, t) +  hWtr(L, t) = 0  ; t>0     Eq. (14-3)  
IC      Wtr(x, 0) = Ф(x) − S(x, 0)  = Фtr(x) ; t = 0, 0 ≤ x ≤ L   Eq. (14-4) 

Equations 14 show that the boundary conditions are homogeneous, but the non-homogeneity penetrates the PDE and 
appears in the form of St(x, t) term. By clearing Φ(x) and S(x, 0), the expression Фtr (x) will also be known and obtained. 
Using Eigen Functions solution, which will be explained in the following section, Wtr (x, t) is calculated and the main 
functions W(x, t) and U(x, t) are also determined. 

 
2.4.1. Solving the non-homogeneity for SAVP’s PDE through the Eigen Functions 

Given the heterogeneous term f(x, t) in the SAVP differential equations, the following device is considered: 
PDE  Jt = α2Jxx +  f(x, t) ; 0<x<L, t>0      Eq. (15-1) 
BC1   J(0, t) = 0   ; t>0        Eq. (15-2) 
BC2   J(L, t) = 0   ; t>0        Eq. (15-3)  
IC      J(x, 0) = Ф(x)  ; t = 0, 0 ≤ x ≤ L     Eq. (15-4) 

 
As J (in the case of f(x, t)) is zero, in the method of separating the variables from the product of multiplication T (t) .X 

(x) is considered, given the linear presence of f (x, t) in above PDE, this function can also be assumed as the product of space 
and time functions: 

f(x, t) = f(t). X(x)         Eq. (16) 
The spatial function is still assumed to be of the Sin type. Therefore, the heterogeneous term is expressed as Equations 

17-1 and 17-2: 
f(x, t) = f(t). Sin �𝑛𝑛𝑛𝑛

L
x�         Eq. (17-1) 

f(x, t) = ∑ f𝑛𝑛(t).∞
n=1 Sin �𝑛𝑛𝑛𝑛

L
x�        Eq. (17-2) 

In the previous equation, only fn (t) is unknown; which is obtained considering the orthogonality of Sin as follows: 
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fn(t) = 2
L ∫ f(ξ, t). Sin �mπ

L
ξ�dξξ=L

ξ=0        Eq. (18) 
Therefore the solution J (x, t) (and in other words, the solution Wtr) can be written as follows: 
J(x, t) = ∑ T𝑛𝑛(t). Sin �𝑛𝑛𝑛𝑛

L
x�∞

n=1         Eq. (19) 
Derivatives J, i.e., Jt and Jxx, are inserted in Equations 20 and 21. 
Jt = ∑ T′𝑛𝑛(t). Sin �𝑛𝑛𝑛𝑛

L
x�∞

n=1         Eq. (20) 

Jxx = −∑ �𝑛𝑛𝑛𝑛
L
�
2

. T𝑛𝑛(t). Sin �𝑛𝑛𝑛𝑛
L

x�∞
n=1        Eq. (21) 

By placing  Jt = α2Jxx +  f(x, t) in the equation, we have: 

∑ T′𝑛𝑛(t). Sin �𝑛𝑛𝑛𝑛
L

x�∞
n=1 = −α2 ∑ �𝑛𝑛𝑛𝑛

L
�
2

T𝑛𝑛(t). Sin �𝑛𝑛𝑛𝑛
L

x�∞
n=1 +  ∑ f𝑛𝑛(t).∞

n=1 Sin �𝑛𝑛𝑛𝑛
L

x� Eq. (22) 
And equation 23 is attained. 

∑ [T′
𝑛𝑛(t) + ∞

n=1 �𝑛𝑛𝑛𝑛
L
α�

2
. T𝑛𝑛(t)− f𝑛𝑛(t) ]. Sin �𝑛𝑛𝑛𝑛

L
x�  =  0     Eq. (23) 

Given the linear independence of Sin whose arcs are such that all Sins cannot become zero simultaneously: 

T′
𝑛𝑛(t) + �𝑛𝑛𝑛𝑛

L
α�

2
. T𝑛𝑛(t) − f𝑛𝑛(t)  =  0       Eq. (24) 

 
In this way n ODEs appear that need to be solved with n initial conditions. The n initial conditions are obtained as 

follows: 
J(x, t) = ∑ Tn(t). Sin �nπ

L
x�∞

n=1         Eq. (25-1) 

Ф(x) = J(x, 0) = ∑ Tn(0). Sin �nπ
L

x�∞
n=1        Eq. (25-2) 

∫ Ф(x). Sin �mπ
L

x�dxx=L
x=0 = ∫ Tn(0) Sin �nπ

L
x� . Sin �mπ

L
x�dxx=L

x=0     Eq. (25-3) 
Where we have: 

Tn(0) = 2
L ∫ Ф(ξ). Sin �mπ

L
ξ�dξξ=L

ξ=0  ; n = 0, 1, 2, …     Eq. (26) 
At this stage the following ODE system should be solved: 

T′
n(t) + �nπ

L
α�

2
. Tn(t) − fn(t)  =  0       Eq. (27-1) 

Tn(0) = 2
L ∫ Ф(ξ). Sin �mπ

L
ξ�dξξ=L

ξ=0  ; n = 0, 1, 2, …     Eq. (27-2) 
 

The solution of these ODE systems will be available through the following pattern: 
ODE  y′(t) +  a(t). y(t) = b(t)  ; t>0      Eq. (28-1) 
IC       y(0) = Known   ;t=0      Eq. (28-2) 

Therefore: 
y(t) = e−a(t).t. y(0) + ∫ b(τ). e−a(t).(t−τ)dττ=t

τ=0       Eq. (29) 

The ODEs solution of Tn (t) is equal to: 

T𝑛𝑛(t) = T𝑛𝑛(0). e−�
𝑛𝑛𝑛𝑛
L α�

2
t + ∫ fn(τ). e−�

𝑛𝑛𝑛𝑛
L α�

2
(t−τ)𝑑𝑑𝜏𝜏t

0      Eq. (30) 

After placement, we have: 

Tn(t) =
2
L

(� Sin �
nπ
L
ξ� .Ф(ξ)dξ )e−�

nπ
L α�

2
t +

2
L

(� e−�
nπ
L α�

2
(t−τ).

t

0
� f(ξ, τ). Sin �

nπ
L
ξ�dξdτ

L

0

L

0
 

Eq. (31) 
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The final solution is presented as the following equation: 
J(𝑥𝑥, t) = ∑ T𝑛𝑛(t). Sin �𝑛𝑛𝑛𝑛

L
x�∞

n=1         Eq. (32) 
 
2.5. Solving the convection-diffusion differential equation in SAVP through Green’s Function 

If the temperature profile changes in SAVP are to be calculated and followed dynamically by considering instantaneous 
changes in both the boundary conditions and the initial condition, the convection-diffusion differential equation will have to 
be solved through the Green Function. Unlike the solution of the Eigen Functions in which homogeneous PDEs with 
heterogeneous boundary conditions and the time function lead to a level of interference response in an equation involving 
double integrals with the virtual variables time (τ) and location (ξ), the Green Function can solve a heterogeneous PDE whose 
heterogeneity term is a function of time and location (F (x, t)) and its boundary conditions are a function of time, by separating 
the effect of each variable in the final answer. 

But what does the term F(x, t) in PDE mean, when the terms of their boundary conditions are time-dependent and 
heterogeneous? F(x, t) can indicate any instability that upsets the SAVP system. These instabilities, such as incomplete 
insulation and SAVP going out of equilibrium and moving to a new equilibrium state, are examples of operation in a transient 
state. In other words, the differential equation of heat transfers through the Green Function, with a special application, 
examines SAVPs during transition from one equilibrium state to another. 

This application focuses on the transition state of saturated vapor from one thermodynamic equilibrium to another, which 
inevitably introduces non-equilibrium thermodynamics. Although the convection-diffusion equation with maximum unstable 
(transient) terms is studied in this section, the subject of non-equilibrium thermodynamics cannot be included 
comprehensively in this study. One of the prominent features of non-equilibrium thermodynamics is entropy production due 
to the constant moving away and approaching equilibrium, which is well expressed and formulated for various systems, 
including systems in which heat transfer is accompanied by entropy production [20]. 

As mentioned earlier, all spatial and temporal terms derived from the non-equilibrium or transient approach can be 
accumulated in F(x, t). It is noteworthy that the fluid in the energy dissipation equation is introduced as a compressible fluid. 
In other words, the assumption of incompressible fluid prevents the user from entering the realm of non-equilibrium 
thermodynamic calculations. 

Equation 33 shows a complete SAVP whose velocity has already been eliminated by the aforementioned techniques. 
This equation is introduced as the basis of PDE and its solution through the Green Function. A few points should be noted 
before going through the solution method via the Green Function. First: the velocity term is omitted and assumed to be 
removed from boundary conditions, in a similar manner as in the technique introduced earlier. Therefore, this PDE is not a 
PDE without fluid velocity. Second: the correlation of temperature profile solution in SAVP with the solution method through 
Green Function is strongly dependent on fluid compressibility. Third: T, instead of U, is considered as the principal variable 
in solving through the Green Function. 
PDE   ∂T

∂t
= α2 ∂

2T
∂x2

+ F(x, t)  ;0< x < L, t > 0     Eq. (33-1) 
BC1     T(0, t) = TSeawater = f1(t)  ;t> 0      Eq. (33-2) 
BC2    T(L, t) = THill  = f2(t)  ;t> 0      Eq. (33-3) 
IC       T(x, 0) = Ф(x)   ;t = 0, 0 ≤ x ≤ L     Eq. (33-4) 

The solution of this equation will be as equation 34, in which the Green Function (G) is seen in all terms. 
T(x, t) = ∫ G(x, t׀ξ, τ)׀τ=0.Ф(ξ)dξL

0   +  Effect of Initial Condition 

∫ ∫ G(x, t׀ ξ, τ)ξ=L
ξ= 0 . F(ξ, τ)dξτ=t

τ= 0 . dτ  + Effect of the Non-Homogenous Term 

∫ ∂G
∂ξ

.x=0׀ f1(τ)dτt
0     – Effect of First Boundary Condition 

∫ ∂G
∂𝜉𝜉

.x=L׀ f2(𝜏𝜏)𝑑𝑑𝜏𝜏𝑡𝑡
0      Effect of second Boundary Condition  

Eq. 34    
The first sentence in Equation 34 expresses the effect of IC; the second expresses the effect of heterogeneity F(x, t); the 

third expresses the influence of BC1 and the fourth expresses the effect of BC2. Unlike the solving methodology using Eigen 
Functions, which is not able to distinguish the effects of different terms in the final answer, the Green Function, as stated in 
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Equation 34, can accurately separate the effects of temporal and location terms that have appeared heterogeneously through 
analytical separation. 

 
2.5.1. Determining the Green’s Function, G(x,t|ξ,τ) 

Green Function G is the function of location (x), time (t), and some dummy variables, i.e., ξ and τ. The appearance of 
partial derivatives of the Green Function at the boundaries is aimed to express and consider all potential changes in the Green 
Function at that boundary over time. On the other hand, the appearance of a negative algebraic sign (-) in the last sentence 
indicates that the definition of the derivative in the Green Function is forward, which is defined from the beginning in the 
basic concepts of the Green Function and is shown in Equation 35. 
G�x, t׀ ξ, τ� =  2

L
∑ e−(nπαL )2(t−τ) .  sin(nπα

L
. x) . sin( nπα

L
. ξ)∞

n=1      Eq. 35 
When the Green Function is specified, the solution T(x, t) is specified dynamically. 
 

3. Results and Discussion 
3.1. Calculation and discussion of SAVP through the energy equation for the laboratory system 

In the SAVP laboratory system, mild or severe time functions can be adopted for boundary conditions. Mild and severe 
temperature changes indicate whether the whole SAVP will reach thermodynamic equilibrium or is it still in the unstable 
dynamic state of continuous temperature changes along the pipe after each change in the source and destination temperatures. 
These two modes can be practically studied due to the limited length of the pipe.  

Mathematically, the Eigen Functions can simply predict the true temperature profile for slight temperature changes at 
the boundaries. Therefore, the steady-state thermodynamics assumption is consistent with this situation, and Equation 32 can 
be used to predict the temperature profile. Severe temperature changes also lead to a transient state in which the fluid in the 
tube never reaches equilibrium and is constantly moving around it. Focusing on the latter fact, Equation 34 can be used to 
profile the transient temperature. 

 
3.2. Calculation and discussion of SAVP through the convection-diffusion equation 
(Eigen Functions) 

The convection-diffusion equation for the state where SAVP has reached equilibrium was applied using the Eigen 
Functions for both minimum and maximum temperature differences for the saltiest water (S = 4%) and compared with the 
results of using the momentum equation. Figures 4 and 5 show the results of solving the temperature profile using the Eigen 
Functions compared to momentum equation. Figure 4, which illustrates temperature changes over 48 hours, demonstrated 
from operational experience while with each change, there was ample opportunity for SAVP to reach equilibrium. The result 
of applying these temperature changes is reported in Figure 4. Figure 5 compares the results of the temperature profile by 
solving the convection-diffusion equation with the solution obtained from the momentum equation. The points shown in 
Figure 5 are experimental. There is an acceptable agreement between the two theoretical curves and the experimental points. 

The two functions f1(t) and f2(t) are temperature functions that change with time (t) at the boundaries. These two 
functions can be selected as completely arbitrary functions imposed by the user on the mathematical model. Here, two 
parabolic shape functions that have a maximum in the middle time interval are introduced as a practical example. The 
duration of the application of these two time functions is such that (according to the experience attained from the operation 
of device) they can make the system reach equilibrium after each change that lasts two hours. In other words, the two-hour 
temperature change steps are adjusted so that the laboratory desalination system can leave the steady-state equilibrium of a 
thermodynamic state and reach and stabilize at the new thermodynamic equilibrium. The origin of this experimental 
technique and its related time steps is attributed to the fact that the device used takes about an hour to reach a steady state. 
Therefore, each time step for two hours certainly provides ample opportunity for the desalination plant to reach equilibrium. 
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Figure 4: Applying the temperature functions for boundaries in solving the convection-diffusion equation using the Eigen Functions. 

 
 

Figure 5: the temperature profile in experimental system using momentum model and solving the convection-diffusion equation 
through the Eigen Functions for 1 inch diameter and salinity of 4.0 wt%. The b and destination temperature was 30 and 5 °C 

respectively. 
 
Figure 5 is based on the equilibrium of temperature applications at the boundaries that contains temperature changes of 

f1(t) and f2(t), for a diameter of one inch and a salinity of four percent. The temperature profile is solved by two equations: 
convection-diffusion (using the Eigen Functions method) and using momentum model. This figure can contain several 
monographs, but the present figure shows the case when f1(t) reaches 30 and f2(t) reaches 5 °C. 
 
3.3. Calculation and discussion of SAVP through the convection-diffusion equation (Green’s Function) 
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In this case, extremely drastic changes can be made to make the SAVP conditions completely dynamic and unstable 
while there are no restrictions. But to understand the problem better, Figure 6 is suggested as a representative of the most 
intense temperature action at the boundaries. It is imposed on the SAVP boundaries over 24 hours, a period that is shorter 
than what has been applied in Section 3.2 (48 hours). These temperature changes at the boundaries are selected in such a 
way that the maximum and minimum temperatures time coincide. The two-dimensional Figure 7 depicts the temperature 
profiles obtained by solving Green Equation; i.e., Equation 34. Unlike Figure 5, where the solution of the Eigen functions is 
compared with the solution of the momentum equation, the output of the Green Function cannot be compared with the profile 
obtained from the momentum equation. The reason for this is that there is an assumption of equilibrium in momentum 
solution that contradicts the nature of Green's unstable solution. Figure 7 shows the significant and intertwined profiles of 
temperature. 
 

 

 
Figure 6: Applying the temperature functions for boundaries for solving the convection-diffusion equation using the Green’s Function. 
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Figure 7: Showing the temperature profile in calculated experimental system through solving the convection-diffusion equation via the 
Green’s Function for 1 inch diameter and salinity is 4.0 wt%. 

 

The lines shown in Figure 7 are in fact isotherms of time that were first applied at the boundaries, but the consequent 
effects of instability are observed along the pipe. To avoid overlapping isotherms that are drawn one hour apart, isotherms 
are selected and plotted that are four hours apart. These lines show the time and location at which the temperature of the fluid 
varies (at the length of the pipe). Some of the experimental values, represented as black dots, correspond to an acceptable 
approximation on the related lines extracted from the mathematical model. 

 
3.4. Calculation and discussion of SAVP through the convection-diffusion equation (Eigen Function) for inland 
scale  

For presentation of temperature profiles in inland scale, the pipeline reaches thermodynamic equilibrium by temperature 
change in boundaries (sever or mild). This, however, could be more reliable knowing the fact that in this case the temperature 
alteration is chiefly due to real climatical alternations in which no sever and fast changes occur. In other words, two factors 
of pipeline length and smooth temperature changes cause the solution to be achieved only by the Eigen Functions. In this 
respect, the temperature profile due to season change for the inland case study of Bandar Abbas-Geno is first presented in 
Figure 8 and its solution is subsequently obtained by Equation 32. The salinity is assumed to be 4.0 wt% for production of 
Figure 8. This profile resembles the temperature profile of the pipeline presented in our previous work based on momentum 
studies (Bandar Abbas-Geno) [12]. 
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Figure 8:  Elemental partition of the vapor transfer between Bandar Abbas and Geno includes vapor temperature in each element for 
pipes (diameters of 1, 2, and 4 m) along the path and salinity of 4.0 wt%. 

 

4. Conclusions 
The results of this study showed that the SAVP’s temperature profile can be mathematically modeled by the solution of 

the Eigen/Green’s function for the convection-diffusion equation; and the outputs are in good agreement with the temperature 
profiles resulting from solution of momentum equation. In fact, for SAVP studies, the temperature profile is the key output 
that could link the results between the mathematical modeling and the momentum equation. 

The transfer-diffusion equation was solved for the laboratory and inland system using both the Eigen functions and the 
Green function. These solutions are provided to show how SAVP works from two different perspectives that can confirm 
the accuracy of pressure drop, temperature drop, density, and fluid velocity in the pipe. In the laboratory mode, with the help 
of data quantifying temperature drop and velocity at the outlet, the temperature profile calculations were verified by solving 
the convection-diffusion equation. The convection-diffusion equation in the laboratory system was solved for mild and severe 
temperature changes using the Eigen Functions and the Green function, respectively; and convincing results were obtained. 
Based on these agreements between experiments and theoretical framework, the temperature profiles study for inland scale 
was reviewed. 

In a material-field based comparison, it is easy to observe that the mass of the materials used at the warm source and the 
cold destination is very small compared to the mass used for the vapor transfer line. This fact underscores the importance of 
investing in piping, from an engineering point of view; and basics of project implementation management should be 
highlighted at this stage. Despite the mentioned fact on the length of the vapor transfer pipe, the industry currently produces 
high-quality and lightweight pipes in different diameters with acceptable strength coefficient, mass and heat insulation, and 
the required expertise in installation and operation of the pipeline is in the assurance stage. Therefore, considering the return 
of investment at the exact long term prospective, there are no challenging obstacles or restrictions on the length of piping. 
By performing conventional environmental and meteorological studies, as well as mastering the temperature status of the 
source and destination and selecting the correct points for transfer, the vapor transfer plan through SAVP can be applied and 
implemented in accordance with engineering and implementation standards. 
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It’s worth mentioning that if the temperature in the cold source reaches zero degrees Celsius or less, the freshwater 
production system will be closed and disrupted due to the freezing of the condensate line. This restriction must be considered 
in choosing the piping site based on knowledge of climate conditions and the meteorological background of the site. 
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