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Abstract  
This study spatio-temporally evaluates the water quality parameters of the lower Mahoning River, OH, U.S.A. for the years 2012-

2015 and the effects of precipitation and land use on the water quality. The principal component analysis was performed on water 

quality parameters TDS, TSS, As, Ba, Cd, Cu, Fe, Pb, Mn, Ni, Se, Zn of the lower Mahoning River. The first three components 

explained 83.742% of the variance in the dataset. The principal components were transformed into composite scores and 

extrapolated using the inverse distance weighted technique to analyse the relative water quality in ArcGIS. The composite score 

inverse distance weighted maps show that from 2012 to 2015, the water quality degraded as it flowed downstream. However, the 

water quality improved in the last stretch of the river downstream. The lower Mahoning River watershed becomes more urbanized 
moving downstream until the end of the basin when land use becomes more forested and comparatively less urbanized. The 

composite score inverse distance weighted trends in water quality could be connected to this change in land use. In the upstream 

region of the river, TSS (0.64) was highly correlated with rainfall events while TDS (-0.57) showed a highly negative correlation, 

which is indicative of the fact that rainfall could act as a dual characteristic i.e., contributing to TSS concentration and decrease TDS 

through dilution. In the downstream region, a strong correlation existed between rainfall and TSS (0.69), Cu (0.8), Pb (0.8), Zn 

(0.75), Ba (0.72), and Mn (0.65). This correlation can be attributed to the fact that the downstream collects the runoff from the 

urbanized area of the downstream of river. The research findings suggest the influence of precipitation on the water quality of the 

lower Mahoning River and the impact of forested and vegetated areas on maintaining water quality. 
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1. Introduction 
Heavy metals are among the most pervasive and harmful contaminants on the planet. Their presence in water can 

directly or indirectly harm the environment through biological biomagnification. Dangerous levels of heavy metals can 

disrupt the biological mechanisms of aquatic organisms, affecting their ability to live, reproduce and behave [1],[2]. 
Heavy metal concentrations in water increase due to runoff from sources such as industrial waste, construction debris, 

asphalt, vehicle emissions, agricultural chemicals, and household waste [3],[4]. In areas with a pronounced geochemical 

background, soil erosion and the diffusion of toxic metals into rivers can lead to basin-wide pollution. [5]. Lakes, rivers, 

and estuaries are utilized worldwide for diverse purposes, including drinking, farming, manufacturing, transportation, 
agriculture, recreation, and waste disposal. Factors such as land surface features, runoff volume, and land use influence 

water quality [6]. This study focuses on heavy metal pollution in the Mahoning River. The Mahoning River separates 

regions of western Pennsylvania and northeastern Ohio, flowing through various Ohio counties before entering 
Pennsylvania to merge with the Shenango River, and form Beaver River. The river’s basin encompasses roughly 1,130 

square miles [7]. Historically, Mahoning River served as a means of transportation and as a raw material in several 

industrial activities. Iron and steel machinery used the river to cool their furnaces and other machinery, and then dumped 
the contaminated, scorching water back into the river [8], [9].  
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The Mahoning River is regarded as one of the most contaminated rivers in America, tainted with heavy metals 
including Cu, Pb, Zn, Ni, and Cd. The accumulation of these pollutants over time has degraded the aquatic environment, 

endangered both the native flora and fauna, and posed a potential risk to human health [10]-[12].  

This study aims to identify the effects of land use and precipitation on the water quality parameters (TDS, TSS, 

As, Ba, Cd, Cu, Fe, Pb, Mn, Ni, Se, Zn) of the Mahoning River, years 2012- 2015.  
The research hypothesis of the study is that the spatial and temporal distribution of heavy metal concentrations in 

the Mahoning River varies in the upstream and downstream stretches of the Lower Mahoning River (study period: 2012- 

2015). Precipitation and landuse is expected to influence the water quality in the Mahoning River. 
1.1 Study area 

The study area focuses on a highly polluted section of the lower Mahoning River. This portion of the river flows 

through Leavittsburg, Warren, Niles, Girard, Youngstown, Campbell, Struthers, and Lowellville. It spans an 
approximate distance of 40-50 miles (Figure 1). 

 

2. Data 

2.1 Water quality and heavy metal data  
The water quality data were obtained from the United States Environmental Protection Agency (U.S. EPA) for 

the years 2012 to 2015. The research utilized data from 7 monitoring stations in the mainstream of the Mahoning River 

(Figure 1).  

 

2.2 Climate data 

Daily precipitation data for the time period and region were obtained from the Climatic Data Online (CDO) 
database of the National Oceanic and Atmospheric Administration (NOAA). The data were retrieved from five 

precipitation monitoring stations within the Mahoning watershed [13]. Furthermore, the stations are categorized into 

distinct zones based on regions, encompassing both water quality stations and rainfall gauge stations (Figure 1). 
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Figure 1 Study Area - water quality and rainfall gauge station of the study area 

 

2.3 Land cover and land use 
During the specified timeframe and within the defined region, land cover and land use data were sourced from 

the United States Geological Survey [14]. Table 1, classifying land cover types, aids in understanding the various land 

cover categories [15]. The land cover and land use map of the study area is shown in Figure 2. Due to a relatively small 
change in land use percentage over the study period, one land use map was used for demonstration. The percentage of 

land use throughout the study period is included in Table 2. 

 

Table 1. Landcover dataset classification. 
 

Value 
Characteristic 

Name 
Description 

4 
Deciduous 

Broadleaf Forests 

The area is characterized by the prevalence of deciduous broadleaf trees, 

with a canopy height exceeding 2 meters. The percentage of tree cover is greater 

than 60%. 

5 Mixed Forests 

The forest area exhibits a relatively equal distribution of deciduous and 

evergreen tree types, with neither type dominating the canopy which measures 

over 2 meters in height. The tree canopy coverage exceeds 60%. 

8 Woody Savannas 
The area under consideration exhibits a tree cover ranging from 30% to 

60%, with a canopy height exceeding 2 meters. 

9 Savannas 
The area exhibits a tree cover ranging from 10% to 30%, with a canopy 

exceeding 2 meters in height. 

10 Grasslands 
The area is characterized by the prevalence of herbaceous annuals that 

do not exceed 2 meters in height. 

11 
Permanent 

Wetlands 
The lands that are permanently submerged with water covering 30-60% 

and have a vegetated cover of more than 10%. 
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12 Croplands 
A minimum of 60% of the given region comprises of cultivated 

cropland. 

13 
Urban and Built-up 

Lands 

The impervious surface area, comprising building materials, asphalt, and 

vehicles, should constitute a minimum of 30%. 

14 
Cropland / Natural 

Vegetation Mosaics 

The cultivation patterns observed in the area under consideration entail 

mosaics of small-scale farming practices, with a predominant coverage ranging 

from 40% to 60%. These farming practices are often accompanied by the 

presence of natural tree, shrub, or herbaceous vegetation. 

17 Water Bodies 
A minimum of 60% of the region is occupied by bodies of water that are 

permanent in nature. 

                                                                              

 

 
Figure 2 Land use and Land cover maps 2012-15. Land cover and land use data were sourced from the United 

States Geological Survey [14].  
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Table 2 Land Cover Classification and Area Percentage Distribution from 2012 to 2015 for the Mahoning River 
watershed. 

    Area Percentage (%)   

Class Land Cover 2012 2013 2014 2015 Mean in % 
Std Dev in 
% 

4 
Deciduous Broadleaf 
Forests 

7.75 7.98 7.93 7.75 7.85 0.10 

5 Mixed Forests 0.10 0.11 0.10 0.11 0.11 0.01 

8 Woody Savannas 34.38 34.09 34.06 34.6 34.28 0.21 

9 Savannas 27.14 27.62 27.89 28.72 27.84 0.71 

10 Grasslands 0.75 0.85 0.93 0.69 0.81 0.10 

11 Permanent Wetlands 0.29 0.27 0.29 0.38 0.31 0.05 

12 Croplands 9.48 9.79 9.74 8.56 9.39 0.59 

13 
Urban and Built-up 

Lands 
10.97 10.97 10.97 10.97 10.97 0.00 

14 
Cropland/Natural 
Vegetation Mosaics 

8.57 7.74 7.52 7.64 7.87 0.43 

17 Water Bodies 0.58 0.57 0.57 0.57 0.57 0.01 

 

3. Methods 

3.1 Principal Component Analysis  
PCA was used as a dimension-reduction tool to analyse the parameters affecting the chemistry of the Mahoning 

River [16]. Prior to pre-processing the data for PCA, the suitability of the data is checked using the Kaiser–Meyer–

Olkin (KMO) and Bartlett’s test of sphericity. PCA applies only when the KMO value is greater than 0.5 and Bartlett’s 
value is less than 0.05 [17].  If the data is found suitable to apply PCA, it is then processed in several steps mentioned 

below [18].     
1. Form a data matrix  

                                    Y = (yij)n∗w
= [

y11 … y1p

⋮ ⋮ ⋮
yn1 … ynp

]                                                   (1)              

      

where yij is the original observed value, n represents the number of observations and w represents water quality 

parameters.  
2. Standardize the original data using Z-score standardization  

3.  

                                 yij
∗ =

(yij−y̅j)

SDj
                                                                             (2) 

 

where y̅j is the mean value for the jth indicator, yij* is the standard variable, and SDj is the standard deviation for 

the jth indication. 

4. Calculate the correlation coefficient matrix, 𝑅 with yij
∗among various parameters     

5.  

                                        R = (rij)w∗w
=

1

n−1
∑ yij

∗ ∗n
i=1 y̅j                                                           (3)    

 
where, i,j = 1,2,…,w.  

6. Calculate eigenvalue (𝜆) and eigenvector (v) for R, which are then used to calculate the principal components. The 

eigenvalues account for the variance and contribution of the components and the Principal Components should 
account for more than 80 % variance in the data.  

All the mentioned calculations were performed using the SPSS-22 software.  

3.2 Composite Scores 

The principal components, linear combinations of the original variables, capture data variance. Scores obtained 

by projecting variables onto principal components are called factor scores, or component scores. A composite score is 
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a single summated score calculated based on the variance of each principal component and provides a comprehensive 
assessment of the overall health of a water body by combining several factors or components into one score that can 

then replace the original set of components. When looking for differences of water quality in different regions, the 

composite scores can be analyzed instead of individual variables or principal components. The composite score is 

calculated using the following formula: 
 

                           F =
λ1

λ1+ λ2 + ...+ λ𝑛 
F1  + 

λ2

λ1+ λ2 + ...+ λ𝑛 
F2  + ⋯ 

λ𝑛

λ1+ λ2 + ...+ λ𝑛 
F𝑛                    (4) 

 

where λ: variance of principal component, n is the number of principal components, F1, F2..Fn is Factor scores [17].     

3.3 Inverse Distance Weighting  

Inverse Distance Weighting (IDW) interpolation, a widespread spatial analysis method utilizes a linear-weight 
combinations of available sample spaces to calculate unknown values. It operates on the principle that values of 

unknown points are more heavily influenced by nearby known points [18]. The IDW operations was performed using 

ArcGIS software. 
 

4. Results and Discussion 

4.1 Principal Component Analysis  
The purpose of PCA was to sift through the large data set to identify the primary information that is distinctive 

of the Mahoning River aquatic environment. The computed results showed that KMO = 0.663 (greater than 0.5), and 

Bartlett’s test of sphericity value = 0 (less than 0.05), which indicated that the data were suitable for PCA. Upon 
performing the PCA three principal components, PC1, PC2, and PC3, were identified with eigenvalues of 7.396, 4.165, 

and 1.838 respectively. These eigenvalues corresponded to variances of 46.22%, 26.03%, and 11.48% respectively, 

accounting for a cumulative variance of 83.74%.  
 

4.2 Factor Score and Composite Score 

Since the composite score is negatively correlated with the river water quality, smaller composite score values 

should indicate better water quality [18]-[20].  
 

4.3 Spatial and Temporal Distribution of Composite Score 

The yearly composite scores were calculated to gain insights into the fluctuations observed in water quality 
stations (Figure 3). The composite score plots indicated that the general characteristics of the spatial distribution of 

scores remained the same throughout the four years, 2012 to 2015. The composite scores increased from upstream to 

downstream of the Mahoning River. The runoff, which carries various pollutants from surrounding areas, can contribute 

to the degradation of water quality as the river continues its downstream flow. Another contributing factor to the 
deterioration of water quality is the increasing intensity of urban and built-up areas in the downstream sections of the 

river which can be evident in Landcover classification map (Figure 2, Table 2). In urbanized regions, anthropogenic 

actions such as industrialization, urbanization, and transportation could discharge contaminants into the aquatic 
environment, comprising of heavy metals, fertilizers, pesticides, and other chemical substances. The cumulative effect 

of these intensified urban areas along the downstream stretches of the river further exacerbates the deterioration of water 

quality. Stations WQ6 and WQ7, situated downstream, consistently exhibited moderate water quality. Being located 
downstream typically subjects these stations to potential pollutants. However, the surrounding dense forests and natural 

vegetation act as a natural buffer, capturing these pollutants and minimizing surface runoff, which can carry 

contaminants into water bodies. This forested environment, combined with limited urbanization in the vicinity, 

counteracts the potential decline in water quality often seen in downstream locations. Another reason might be the 
possibility of groundwater from adjoining aquifer contributing to mixing and dilution phenomena locally, highlighting 

the role of natural environmental determinants in these specific locales.   
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Figure 3 Spatial and temporal distribution of composite scores from 2012 to 2015.  

3.6 Precipitation impact on the water quality of the Mahoning River 

The impact of rainfall events on water quality data was examined for different Groups (Figure 1). Table 3 presents 

statistical correlations between selected rainfall events and the water quality parameters. The studied rainfall events had 

more than 2.5 cm (1 inch) of continuous rainfall and water quality parameters selected were within 24 hours following 
each rainfall event. 

Table 4 Group wise correlation (r value) between rainfall events >2.5 cm and various parameters  

Parameters 
Rainfall events 

Group 1 Group 2 Group 4 

TDS -0.57 0.15 0.43 

TSS 0.64 0.20 0.69 

Zn 0.52 0.35 0.75 

As 0.07 0.27 -0.02 

Ba -0.35 -0.36 0.72 

Cd 0.00 0.51 0.36 

Cu 0.64 0.63 0.80 

Fe 0.48 0.27 0.46 

Pb 0.52 0.30 0.80 

Mn -0.15 0.40 0.65 

Ni -0.10 0.27 0.39 

Se 0.21 0.42 0.00 

Group-wise comparisons (Figure 1) provided insights into the contribution of precipitation to pollution in the 

Mahoning River. In group 1, TSS and Cu were correlated with the rainfall events (r values of 0.64 and 0.64). The TSS 
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includes sediment, silt, sand, plankton, algae, and other solid impurities such as chemical precipitates. The correlation 
of TSS with precipitation may be due to the fact that rainfall events potentially contribute to increased levels of 

suspended solids in the river through urban runoff. Interestingly, TDS showed a highly negative correlation with rainfall 

events in Group 1. This is likely due to the dilution effect where increased rainfall led to a decrease in the concentration 

of dissolved solids in the water. (IPCS, 1998). Thus, a dual and contrasting characteristic of rainfall events is noteworthy 
manifested as elevated concentration of TSS and decreased concentrations in TDS. 

The high correlation between Cu and rainfall in all groups may suggest a land-use driven genesis. Cu is released 

into water through weathering of soil, industrial discharge and urban runoff. The correlation in group 3 could not be 
drawn due to paucity of precipitation data. In group 4, a strong correlation existed between rainfall events and TSS, Cu, 

Pb, Zn, Ba and Mn. Whilst TSS is indicative of recent pollution loads, the rest of the parameters such as Pb, Zn, Ba and 

Mn infer pollution load contributions from multiple sources.  Another possible reason of the mentioned correlation is 
the location i.e., in the downstream direction. The extreme downstream area receives both urban and rural runoff from 

the upstream and the rest of the sub-catchments hence bears the signature in the form of elevated concentrations of TSS, 

Cu, Pb, Zn, Ba and Mn.  

Additionally, zinc (Zn) and lead (Pb) both showed a correlation of 0.6 or above with rainfall events in two of the 
groups, indicating a significant impact from runoff processes. Zinc is commonly utilized in industrial processes and is 

also present in fertilizers and pesticides, representing some of the prevailing sources within the Mahoning River 

catchment area. Similarly, lead, often associated with industrial processes and the decay of infrastructure such as old 
pipes and paint, showed a moderate to high correlation with rainfall in two groups, suggesting that runoff from these 

sources may be contributing to its presence in the river.  

There was a weak correlation between As, Cd and Ni and rainfall events. This suggests that the presence of 
pollution, from these contaminants might be attributed to historical practices than being influenced by recent runoff.  

 

5. Conclusion  

This study analyses the spatial distribution and temporal patterns of the water quality parameters of the lower 

Mahoning River in the years 2012-2015 and examines the effects of land use patterns and precipitation on the river’s 

quality. The strong correlations between rainfall and TSS (0.69), Cu (0.80) in the upstream region, Cu (0.80) in the 
middle reaches and TSS (0.69), Cu (0.8), Pb (0.8), Zn (0.75), Ba (0.72) and Mn (0.65) in the downstream region 

underscore the impact of precipitation-driven pollution on the river's water quality.  

Integrating land use and landcover patterns with composite scores lend crucial information about water quality 

of the Mahoning River. In urbanized or industrialized regions, the surface runoffs as a result of precipitation events can 
transport contaminants into the river, thereby causing elevated concentrations of the contaminants. The assessment of 

various monitoring stations, in terms of composite scores, indicates that the water quality of the stations in the upstream 

interface of urban and forested areas, such as WQ1(-0.874), WQ2(-0.778), and WQ3(-0.234), contrast with those in the 
downstream areas within urban and built-up regions, like WQ5(0.695) and WQ4(0.699). Stations predominantly nestled 

in forested surroundings, such as WQ7(0.218) and WQ6(0.274), showcased moderate water quality. The findings of the 

study highlight the interconnectedness of land use patterns and precipitation on the water quality of the lower Mahoning 

River.   
 

 

 
 

 

References 

[1] S. Mitra, P. Chakraborty, N. Paul, D. K. Mukherjee, R. Das, and S. Gupta, "Impact of heavy metals 

on the environment and human health: Novel therapeutic insights to counter the toxicity," Journal of King 

Saud University - Science, vol. 34, no. 3, Art. no. 101865, 2022, doi: 10.1016/j.jksus.2022.101865. 

[2] S. Ehsani, D. James, and Z. M. Oskouie, "Determining selenium speciation by graphite furnace 

atomic absorption spectrometry," Environmental Monitoring and Assessment, vol. 193, pp. 1–12, 2021. 



 

134-9 

[3] National Oceanic and Atmospheric Administration (NOAA), "About our agency," 2023. [Online]. 

Available: https://www.noaa.gov/about-our-agency 

[4] G. Yu, F. Chen, H. Zhang, and Z. Wang, "Pollution and health risk assessment of heavy metals in 

soils of Guizhou, China," Ecosystem Health and Sustainability, vol. 7, no. 1, 2021, doi: 

10.1080/20964129.2020.1859948. 

[5] T.-T. Lim, J.-H. Tay, and C.-I. Teh, "Significance of aqueous cation composition on heavy metal 

mobility in a natural clay," Water Environment Research, vol. 74, no. 4, pp. 346–353, 2002, doi: 

10.2175/106143002x140107. 

[6] M. M. Bahar, H. Ohmori, and M. Yamamuro, "Relationship between river water quality and land 

use in a small river basin running through the urbanizing area of Central Japan," Limnology, vol. 9, no. 1, pp. 

19–26, 2008, doi: 10.1007/s10201-007-0227-z. 

[7] A. B. Sullivan, G. M. Georgetson, C. E. Urbanczyk, G. W. Gordon, S. A. Wherry, and W. B. Long, 

"Modeling flow and water quality in reservoir and river reaches of the Mahoning River Basin, Ohio," U.S. 

Geological Survey Scientific Investigations Report, 2023, doi: 10.3133/sir20225125. 

[8] Riano, "Field Notes: The Mahoning River as Urban Reinvention," The Architectural League of New 

York, 2021. [Online]. Available: https://archleague.org/article/mahoning-valley-dam-removal/ 

[9] U.S. Environmental Protection Agency (EPA), "Mahoning River Waste Load Allocation Study," 

2021. [Online]. Available: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=5000113Q.TXT 

[10] M. Jaishankar, T. Tseten, N. Anbalagan, B. B. Mathew, and K. N. Beeregowda, "Toxicity, 

mechanism and health effects of some heavy metals," Interdisciplinary Toxicology, vol. 7, no. 2, pp. 60–72, 

2014, doi: 10.2478/intox-2014-0009. 

[11] T. Liang, H. Wang, X. Zhang, S. Zhang, and X. Yu, "Transportation processes and rates of heavy 

metals in an artificial rainstorm runoff under different land use types," Chinese Journal of Applied Ecology, 

vol. 14, no. 10, pp. 1756–1760, 2003. 

[12] Z. Wang and G. Lei, "Study on penetration effect of heavy metal migration in different soil types," 

IOP Conference Series: Materials Science and Engineering, vol. 394, no. 5, Art. no. 052033, 2018, doi: 

10.1088/1757-899X/394/5/052033. 

[13] National Oceanic and Atmospheric Administration (NOAA), "About our agency," 2023. [Online]. 

Available: https://www.noaa.gov/about-our-agency 

[14] U.S. Geological Survey, "LP DAAC - MCD12Q1 v006," 2023. [Online]. Available: 

https://lpdaac.usgs.gov/products/mcd12q1v006/ 

[15] D. Sulla-Menashe and M. A. Friedl, "User Guide to Collection 6 MODIS Land Cover Dynamics 

(MCD12Q2) Product," User Guide, vol. 6, no. 1, pp. 1–8, 2018. 

[16] H. Abdi and L. J. Williams, "Principal component analysis," Wiley Interdisciplinary Reviews: 

Computational Statistics, vol. 5, no. 2, pp. 125–143, 2013, doi: 10.1002/wics.1246. 

[17] IBM, "KMO and Bartlett’s Test of Sphericity," IBM Documentation, 2025. [Online]. Available: 

https://www.ibm.com/docs/en/spss-statistics/25.0.0?topic=detection-kmo-bartletts-test 

[18] W. Yang, L. Zhang, X. Lu, and T. Xue, "Using principal components analysis and IDW 

interpolation to determine spatial and temporal changes of surface water quality of Xin’anjiang River in 

Huangshan, China," International Journal of Environmental Research and Public Health, vol. 17, no. 8, Art. 

no. 2942, 2020, doi: 10.3390/ijerph17082942. 

[19] F. Wu, Z. Zhuang, H. Liu, and Y. Shiau, "Evaluation of water resources carrying capacity using 

principal component analysis: An empirical study in Huai’an, Jiangsu, China," Water, vol. 13, no. 18, Art. no. 

2587, 2021, doi: 10.3390/w13182587. 

[20] S. Xu, L. Ji, Y. Chen, Y. Zhao, Y. Yang, and Q. Wang, "The fuzzy comprehensive evaluation 

(FCE) and the principal component analysis (PCA) model simulation and its applications in water quality 

https://www.noaa.gov/about-our-agency
https://archleague.org/article/mahoning-valley-dam-removal/
https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=5000113Q.TXT
https://www.noaa.gov/about-our-agency
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://www.ibm.com/docs/en/spss-statistics/25.0.0?topic=detection-kmo-bartletts-test


 

134-10 

assessment of Nansi Lake basin, China," Environmental Engineering Research, vol. 26, no. 2, Art. no. 200022, 

2020, doi: 10.4491/eer.2020.022. 

 


