
Proceedings of the 8th International Conference on Theoretical and Applied Nanoscience and Nanotechnology (TANN 2024) 
Chestnut Conference Centre - University of Toronto, Toronto, Canada – June 10-12, 2024 
Paper No. 135 
DOI: 10.11159/tann24.135 

135-1 

 

Work Function Tuning for Junctionless Transistor High-K Gate Material 
Using Machine Learning Descriptor Engineering 

 
Sehtab Hossain1, Ahmed Fazle Rabbi2 

1University of the Pacific  
Atchley Way, Stockton, United State 

Shossain1@pacific.edu; Afrabbi@gmail.com 
Arlington, Virginia, USA  

 
  

Abstract - A new material descriptor to predict the work function of the high-k gate material of a junctionless transistor. This descriptor 
model is focused on vectorizing property metrics and empirical property functions along with mixing features. Besides that, with 
database-based features, the mixing features improve the training and prediction of the models. R2 is greater than 0.89 and the smallest 
mean absolute error (MAE) and root mean square error (RMSE) are smaller than 0.14 eV and are obtained by implementing Decision 
Tree Regression. It is noticed that using ensemble algorithms slightly lightens the overfitting problem. This work provides a new method 
of gate material engineering using material and density functional theory data-based descriptors. Algorithm calculated work function is 
implemented in Junctionless transistor and performance is observed. 
 
Keywords: Junctionless Transistor, FinFET, Descriptor, Inference, Machine Learning 
 
 
1. Introduction 

In the field of nanoelectronics, gate oxide engineering governs the transistor generation. CMOS technology gate oxide 
used to be silicon dioxide. From 22 nm technology, FinFET is introduced. From FinFET, the gate oxide is changed to 
Hafnium Dioxide (Hf2O). With the scaling down process, Hf2O is infamous for varying work functions. During atomic layer 
deposition (ALD) because of a very thin layer less than 1 nm, work function variation is noticed with different clusters [1-
3]. To tune the work function of Hf2O, there are several fabrication procedures in existence. But these procedures disregard 
Density Functional Theory (DFT) calculation. Hence, with the help of Artificial Intelligence (AI), it is possible to pinpoint 
the crucial reason for work function variation. 

Data-driven methods allow resolving the classical methods which demand huge computing resources. Data along with 
DFT data will cost more - a few hours of computing time. Moreover, it is possible to lessen some computation hours using 
machine learning algorithms.  Using machine learning (ML) to predict the work function of Hf2O will be a classic illustration 
of ML in the prediction of physical properties of a material as well as a specific nanoelectronics device. The application of 
ML and Data Science to material has a lot of avenues to discover new materials and analysis [4,5]. In [4] bi-dimensional 
(2D) material analysis was done with ML. With ML analysis concentrated on ensemble algorithm band gap and work 
function are being calculated from a synthetic 2D material database. In [5] 2D MXenes work function was calculated with 
ML. They introduced reduced order models comprising ten, eight, and five features to predict the work function. They readily 
tune electronic properties like band gap, work function, density of states at the Fermi level, etc. After running ensemble 
algorithms, they pointed out the work function. Some authors discuss the integration of machine learning techniques into 
materials science to expedite the process of discovering new materials. By addressing the challenges inherent in traditional 
materials discovery methods, such as time-consuming experimentation and limited data analysis capabilities, the authors 
propose leveraging machine learning to predict material properties, identify potential candidates, and guide experimental 
efforts [6]. The paper explores various machine learning methodologies, including supervised and unsupervised learning, as 
well as reinforcement learning, and presents case studies demonstrating successful applications in predicting material 
properties, optimizing synthesis conditions, and accelerating the discovery of novel materials across different domains. 
Focusing on the specific target of DUV optical materials, the study employs machine learning models to predict material 
properties relevant to nonlinear optical applications [7]. Unlike traditional machine learning approaches, the authors 
emphasize the interpretability of their models, allowing for a deeper understanding of the underlying relationships between 
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material compositions and desired properties. By leveraging interpretable machine learning, the paper demonstrates an 
effective strategy for guiding the design process of DUV nonlinear optical materials, ultimately facilitating the discovery 
of novel materials with tailored properties for advanced optical applications. The authors investigate the effectiveness 
of machine learning algorithms in predicting materials properties for the purpose of materials discovery [8]. Specifically, 
the study focuses on assessing the explorative prediction power of these algorithms using k-fold forward cross-
validation. The research evaluates a range of machine learning algorithms to determine their ability to accurately predict 
material properties and uncover potential relationships between input features and desired outcomes. By employing k-
fold forward cross-validation, which involves iteratively adding new data points to the training set, the study aims to 
simulate the exploration process in materials discovery. The findings provide insights into the performance of various 
machine learning algorithms and their suitability for guiding explorative materials research, offering valuable guidance 
for researchers seeking to leverage machine learning in the pursuit of new materials discovery. 

In this paper, we tune the work function of high-k gate oxide Hf2O. Hf2O has several electronic crystal structures 
with different formation energy. Other material properties like energy above hull eV, magnetic ordering, and DFT 
properties are considered. Among all crystal structures, the monoclinic electronic crystal structure is widely used for 
gate oxide. In the database, all these material properties are considered. Along with DFT data, the work function of high-
k gate material is predicted. Besides algorithms being implemented to predict work function, descriptor engineering, 
and feature engineering are crucial for reducing error and loss in the training process to increase the viability of the ML 
model. Here we make use of Material Project Data [9] of 9900 entries which has reliable data with DFT data. In this 
paper, descriptors are simple and related to electronic and material properties. To strengthen the efficiency of the model 
we attached DFT data with electronic and material data. Along with vectorized descriptors, the model could skip 
expensive-calculated features. Hence, ML cycles will get faster with lesser bias and overfitting. Our findings imply a 
new insight into material and nanoelectronics domain knowledge. Finally, with ensemble algorithms ML implies some 
points about important features of material by which work function get affected. From this ML model we could correlate 
the obtained predicted values with ab initio calculations and determine the work function of high-k gate oxide. After 
calculating the work function by ML algorithms, the work function related to Hf2O is implemented in junctionless 
transistor, and performance is analyzed.  This paper is organized as follows: section 1 discusses the introduction where 
related works are described. Section 2 is dedicated to methodology where several ML algorithms and their 
implementations are discussed elaborately. Section 3 is dedicated to results and discussion and ends with a conclusion. 
 

 
2. Methodology 
2.1. Descriptor Construction 
       To construct a descriptor, we introduce relevant atom-atom interactions based on elemental parameters to produce 
molecule-level descriptors. In this study, in total eleven descriptors are implemented in this paper. Among them, crystal 
systems, space group symbols, volume, density, and sites are electronic-crystallographic data. One descriptor Energy Above 
Hull (EAH) in ev/atom relates to assessing the stability of a material concerning its possible decomposition products. 
Specifically, it quantifies the energy difference between the material in question and the most stable composition of its 
constituent elements. When a material is synthesized or computed, it may not always be the most stable configuration given 
its constituent elements. The energy above hull is calculated by comparing the total energy of the material to the total energy 
of the most stable combination of its constituent elements, typically under the same conditions (such as pressure and 
temperature). A positive value of energy above hull indicates that the material is energetically less stable compared to its 
constituent elements in their most stable forms. Another descriptor formation energy in eV/atom represents the energy change 
associated with the formation of a compound from its constituent elements, per atom. It is defined as the energy difference 
between the total energy of the compound and the total energies of its constituent elements in their stable reference states. 
Mathematically, it is often expressed as 

Ef   = Ecompound - ∑i ni Eelementi                       (1) 
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where Ef is the formation energy, Ecompound the total energy of the compound, ni is the number of atoms of an element in the 
compound and Eelementi is the total energy of one atom of the element is in its stable reference state. A negative formation 
energy indicates that the compound is energetically stable concerning its constituent elements. This means that it requires 
less energy to form the compound from its elements than to keep them separated. Conversely, positive formation energy 
suggests that the compound is energetically unfavorable and may tend to decompose into its constituent elements. After 
selecting descriptors, data preparation, data augmentation, and feature engineering commenced. The data frame is cross-
validated and applied to the ML algorithm.  
 
2.2. Model Selection 

The database has been implemented to several ML algorithms ranging from Linear, and Elasticnet to ensemble 
algorithms like Random Forest and Extreme Gradient Boost (XGB). After data cleaning and preparation and feature 
engineering, the dataset was split into 1:4 test to train ratio respectively. For each ML model, datasets are shuffled and 
analyzed with tuned Hyperparameters. Hyperparameters are tuned with GridSearchCV of scikit-learn. The best model is 
selected from the lowest function loss and R2 score. Cross-validation is applied in the train-test set to reduce the overfitting 
of data. The cross-validation sampling is generated by k-fold cross-validation for regression analysis. Moreover, after random 
splits the selected models are stable. 
 
             
3. Result and Discussion 

The outcome of the evaluation is based on features. The dataset has 3 hybrid features and 8 reference features. the data 
set is at first prepared and feature-engineered and then split into train and test sets (Fig.1). Before splitting exploratory data 
analysis is done meticulously. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig 1. Workflow of the descriptor engineering and ML algorithm implementation. After extracting features and 

constructing vectorized data from augmentation implemented as input to machine learning algorithms and inferenced 
data is utilized to build 14 nm technology Junctionless FinFET. 
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3.1 Exploratory Data Analysis (EDA) 
      For exploratory data analysis, correlation analysis is implied through features. In correlation analysis, all the features 
exhibit Pearson correlation is less than 0.49. Hence, in correlation analysis, the features are not strongly correlated. To 
investigate the strong relation between features, the Variation Inflation Factor (VIF) is calculated. After VIF calculation, it 
is noticed that features ‘sites’ and ‘volume’ have high VIF scores which implies that these two features are strongly correlated 
(dependent on each other). From pair plot analysis, bandgap and work function show cluster behaviour. Energy Above hull 
(EAH) and bandgap also exhibit cluster behaviour.   
 
 3.2 Regression Analysis 
       Several regression algorithms are implemented in this dataset. Linear regression, Ridge regression, Lasso Regression, 
and Elastic Net regression show almost the same inference. Linear regression algorithms have higher Mean Absolute Error 
(MAE) and Root Mean Square error (RMSE) than other algorithms. R2 Score is almost the same. MAE, RMSE, and R2 Score 
infer the nonlinear behaviour of the dataset. 
       
3.3 Support Vector Machine & K Nearest Neighbor (KNN) Algorithm 
      In Support Vector Regression (SVR) MAE, RMSE reduced significantly, and R2 Score (0.82) improved sharply. Radial 
Base Function (RBF) kernel is implemented with C value of 10 and gamma of ‘scale’. KNN regression shows slightly higher 
MAE and RMSE than SVR but R2 Score is slightly higher (0.84). The variation of R2 Score may be the performance 
difference between RBF kernel for SVR and the number of neighbors (7) for KNN.  
 
3.4 Neural Network Regression 
      With ‘Adam’ optimizer and ‘mean Squared Logarithmic Error’ metrics neural network regression provides MAE, RMSE 
of 0.14 eV and 0.14 eV respectively. Neural network optimized with Adam optimizer and ‘relu’ activation, is the reason for 
low MAE and RMSE value. R2 Score for the train set and test set are 0.87 and 0.84 respectively. A slight difference between 
these two sets may be caused by overfitting. Fig.2 depicts Model loss and Model Mean Squared logarithmic error. Observing 
Fig.2, it is clear that with the increment of epoch train and test set error is decreasing, and the error difference is decreasing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig 2. (a) Visualization of the predicted and true values of the work function with Neural network Regression (b) 
Error versus Epoch of Neural network (c) Mean squared logarithmic error vs epoch, for both loss function  decrease 

with the epoch of time. 
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3.5 Tree Algorithm 
       Tree algorithm- decision tree regression shows some crucial points. The feature importances plot shows the feature 
‘band gap’ as the highest importance than other features (Fig.3(c)). RMSE and MAE are in the limit of 0.3 eV and a slight 
difference in R2 Score is observed between train and test set. In Fig. 3 (a,b), for the case of the test set there are some small 
outliers visible. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.6 Ensemble Algorithm 
      Random forest and Extreme Gradient Boost (XGB) are implied as ensemble algorithms. Apart from decision tree 
regression, these two ensemble algorithms imply ‘density’ as the highest importance feature.  MAE and RMSE are in the 
range of 0.3 eV and both of the algorithms show differences in MAE, RMSE, and R2 Score (Fig 3(b, c, d)). Both algorithms 
show R2 score in the range of 0.88 and a little bit of difference in the train and test set (Fig.4). Analyzing feature importance, 
it has been noticed that tree algorithms and all ensemble algorithms show ‘density’ and next ‘band gap’ as the highest 
important features in the models (Fig. 5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 3. Visualization of predicted and true values of work function with several ML algorithms (a) Gradient Boost 

Regression (b) XGBoost Regression (c) Decision Tree Regression (d) Random Forest Regression (e) Neural Network 
Regression (f) Support Vector Regression.  R2 Score is also mentioned in the images. 

 
Fig 4. Bar plot of the RMSE errors generated by several ML Algorithms. The bars are grouped by train 

and test sets. 
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After several inferences, the calculated work function is implemented in a 14 nm technology junctionless FinFET 
transistor by Sentaurus TCAD, and i-v characteristics are observed. From the inferenced work function, the transistor’s 
electron transport is normal and On current is at the scale of 1e -6 A [11-13] (Fig.6(a, b)). Additionally, logic states are 
implemented in the FinFET, and electron transport and ON current are observed and on current is in very good agreement 
with concurrent FinFET devices and pointed out a little bit max current than concurrent FinFET devices (Fig. 6 (c,d)). 
is examined in several switching conditions for further dimensions of the transistor and noticed On current is in the scale 
1exp-6 A.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 5. Feature importance in several ensemble algorithms (a) XGB (b) DTR (c) RF Where bg = bandgap, eah = 

Energy Above Hull, fe = Formation energy 

 
Fig 6. Implementation of the inferenced work function in a tri-gate junctionless transistor. (a) Trigate 

junctionless 14 nm technology FinFET transistor where inferenced value of work function = 4.66 eV is 
implemented (b) I-V characteristic – performance of 14 nm FinFET (c) Drain current variation with varying 
inferenced work function (d) work function Vs maximum current varying several logic states in the FinFET. 
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4. Conclusion 
     In summary, vectorized descriptors along with material data descriptors are implemented for the proposed model to infer 
the work function of high-k gate oxide material. We show that the whole pipeline of the model is low-cost and highly 
efficient. After the implementation of the database in the model ensemble algorithms show a high R2 value (>0.89) and MAE 
and RMSE at a maximum of 0.3 eV. Neural network and SVR show great improvement with the lowest MAE and RMSE 
(> 0.14 eV) and decent R2 value (>0.89). From this observation, ii is evidence of the database nonlinearity. Inference from 
ensemble algorithm and feature importance is in good agreement with empirical data [15,16]. Furthermore, inferences from 
ML models are meticulously observed to control overfitting and bias. Finally, the inference work function is applied to a 
14nm technology junctionless FinFET transistor and the performance is the same mark as the existing junctionless transistor. 
This work provides a pipeline for ML-led nanoelectronics with low resource requirements and high efficiency. 
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