Richao Cong, Makoto Saito, Ruichi Hirata, Akihiko Ito, Shamil Maksyutov
Abstract: As the concerns on climate change increased, accurately quantifying the greenhouse gas (GHG) emissions from anthropogenic sources has been emphasized more and more. In this paper, uncertainty analysis is conducted for multiple global GHG inventories from anthropogenic sources to explore the sources and the magnitude of them. We first summarize the principal characteristic for 17 global GHG inventories by four indexes. And then to assess the sources and magnitude of uncertainty for these inventories, the discrepancies are quantified on energy statistics data and estimation results of carbon dioxide (CO2) emission on anthropogenic sources at the global total and national scale. Finally, we determine the nations with larger magnitude (extent and proportion) of uncertainty by two indicators which will be helpful for the policy-making on GHG emissions mitigation. As the analysis result, we find that uncertainty of oil consumption data is the largest among major fuels in 2013 as much as 44.6 exajoules (EJ) and the magnitude of uncertainty in CO2 emissions data is significant at global perspective as much as 4.0 petagrams (Pg) CO2 yr-1. At national perspective, as the largest emitter nation in 2013 China, uncertainty from the coal consumption data of which is the largest in major fuels as much as 15.5 EJ and the magnitude of uncertainty for CO2 emissions of China in 2013 is as much as 1.5 Pg CO2 yr-1.
Keywords: GHG, CO2 emissions, Uncertainty analysis, Anthropogenic source, Inventory database.
Date Published: February 1, 2019 DOI: 10.11159/ijepr.2019.001
View Article